@ MOTOROLA

MC68881

FLOATING-POINT COPROCESSOR
USER’S MANUAL

First Edition

All rights reserved. No part of this document may be reproduced in any form or by any means without permission in
writing from Motorola Inc.

This document contains information on a new product. Specifications and
information herein are subject to change without notice. Motorola reserves the
right to make changes to any products herein to improve functioning or
design. Although the information in this document has been carefully reviewed
and is believed to be reliable, Motorola does not assume any liability arising
out of the application or use of any product or circuit described herein; neither
does it convey any license under its patent rights nor the rights of others.

Motorola, Inc. general policy does not recommend the use of its components in life support applications where in a
failure or malfunction of the component may directly threaten life or injury. Per Motorola Terms and Conditions of

Sale, the user of Motorola components in life support applications assumes all risk of such use and indemnifies
Motorola against all damages.

© 1985 by Motorola Inc.

PREFACE

This manual is divided into two major parts, the first (sections 2 through 6) dealing with the
programmer's model of the MC68881 and the floating point instruction set that it implements.
This portion of the manual is written with the assumption that the MC68881 is connected as
a coprocessor to the MC68020 microprocessor; and thus, the instruction formats and
syntaxes used are for such a system. A prior knowledge of M68000 assembly language
conventions is quite helpful, although not required. If the MC68881 is used in a system with
a main processor other than the MC68020, it is expected that the host processor will
simulate the M68000 Family Coprocessor Interface requirements of the MC68881 in such a
way that the programmer's model discussion in this manual will be relevant. Included in this
part of the manual is a detailed description of the function of each instruction, and a section
on instruction timings that can be used for program optimization, and to predict floating point
arithmetic performance.

The second part of this manual (sections 7 through 11) pertains to the hardware interface of
the MC68881 to the host system, and is most pertinent to system hardware designers. Like
the first portion of this manual, the hardware description, for the most part, assumes that the
host processor is the MC68020. Thus, bus cycle timing diagrams, interface register
addressing, etc., are discussed from the viewpoint of the MC68020 hardware conventions. A
prior knowledge of the MC68020 bus interface, particularly as it pertains to the M68000
Family Coprocessor Interface, is quite helpful in understanding the operation of the
MC68881 bus interface. Included at the end of the manual is a section containing the AC
Electrical Specifications for the bus interface, with all pertinent timing diagrams and
characteristic tables.

At the end of the manual is a glossary of terms, and a list of abbreviation and acronyms used
throughout this manual.

Throughout this manual, "M68000" or "M68000 Family" is used to refer to the family of
devices that support the Motorola 68000 Microprocessor Family architecture. When "MC"
precedes a 68xxx number, this number refers to a specific part (eg., MC68020, MC68881,
etc.). The MC68881 is designed to perform as a coprocessor to any of the M68000 Family
processors, although the MC68020 is currently the only device that implements the M68000
Family Coprocessor Interface in hardware.

TABLE OF CONTENTS

Paragraph
Number Title
Section 1
General Description
1.1 The Coprocessor CONCEPLcceceveirererreririeeeerieiee s e erese e eresse s seesen
1.2 HArdware OVEIVIEWccccccevirieieeireiesteie et e seese e e evesesesassseseseens
1.2.1 Bus Interface UNitc.ceeecieiiiececrscre e,
1.2.2 Coprocessor INtErfaceccocecieiceciiee et
1.3 Operand Data FOrMALScccecevereienreieciere et e earenas
1.3.1 Integer Data FOMALSccceeeeeeieeiieeeeeeece et e v
1.3.2 Floating-Point Data FOrmatsccccceeeeriececiececeeeececeee e
1.3.3 Packed Decimal String Real Formatccccocvvevecceeccnirince s,
1.3.4 Data Format SUMMArYcccooceiiiniiicrerere e
1.4 INSIIUCHION SBL ...ttt s,
1.4.1 MOVES ..ttt st et sr e er e st beerean
1.4.2 MoOVE MUIIDIES ..ottt et et
1.4.3 Monadic OPerationscceeevermvireesreesiereeereceereeeeereree e e
1.4.4 Dyadic Operationscccccceeeeierierieneiccentesce et ere s ereens
1.4.5 Branch, Set and Trap On Conditioncccccceeveeerereereiee e
1.4.6 Miscellaneous INSruCtionscccoevviiiiniiineceseestee e
1.5 Addressing MOAEScociiiiiiiiiieeee e
Section 2
Programming Model
2.1 Programming Model ..ot
2141 Floating-Point Data RegiStersccccccevieveeceieceieceee e,
2.1.2 Floating-Point Control REGIStercceceeereceeieeeece e
2.1.21 FPCR Exception Enable Bytecccvveevvenceveeceniecesreeeee,
2.1.2.2 FPCR Mode Control Bytecccovvievieveeciineeeee e,
2.1.3 Floating-Point Status Registerc.cccoccnievirevrvieecerie e,
2.1.3.1 FPSR Floating-Point Condition Code Bytecccceovrurremnnne..
2.13.2 FPSR Quotient BYtecocuviiiviieieereceeee ettt e,
2.1.3.3 FPSR Exception Status Byteccccoceevevveieniinvencreneece e,
2.1.34 FPSR Accrued Exception Byteccccceervieiinnvnnenieeceneen,
2.1.35 Floating-Point Instruction Address Registercccceoeevervevvervnnee
2.2 Operand Data Formats and TYPEScccceevervriviniienerneenceeee e,
23 Integer Data FOrmMatsccoceeeiiiieenieceeereece e,
24 Floating-Point Data Formatsc.cccceveninnnnninceeccee e,
2.41 Normalized NUMDETS ..o

vii

Page
Number

TABLE OF CONTENTS

(Continued)
Paragraph

Number Title

242 Denormalized NUMDErSoovvviiiiiiiiiecc e
2.43 =] (0 T= T PRSP PR P PPPPPR
244 INFINIHIES «veeeveeeeeeeie et st sr e se e e e
2.4.5 NOt-A-NUMDETS ...oiiiieiece et s
246 Data TYpe SUMMANYccccoviieuiriniin i
25 Packed Decimal Data FOrmatcccccooiieieriniieen e
2.6 Internal Data FOrMatSc.ooeiiiiieiiiniiii i e
2.7 Format CONVEISIONSocciiiiiiiieieeeee ettt et e e e,
2.71 Conversion to Extended Precision Data Formatcccceveviennee.
2.7.2 Conversion to Other Data Formatscccccovvvriiiniiicicinciniieceenn,
23 Data Format Detailscccccevviiiieniieiiie e e

Section 3
Instruction Set

3.1 Instruction Set SUMMANY ..occcieiiiinceereeeee e e
3.1.1 Data Movement Operationscccccvmveiiini s
3.1.2 Dyadic Operationsccceveevereeienere e s e,
3.1.3 Monadic OPErationsccceceveereriereerenenieirie e s eneas
3.14 Program Control Operationsc.ccccceeeeericiiiiin i,
3.1.5 System Control Operationscccoceeevnevvincniiiccnncn
3.2 Computational ACCUraCYcccccvrevirciiiiiiiniie e
3.2.1 Arithmetic INSIrUCLIONSooiiiiiieeee e
3.2.2 Transcendental INStrucCtionsoocccceviiiiiiiiii e
3.2.3 Decimal CONVEISIONS ...ccccveeeiiriiieeieeieeie et
3.3 Conditional Test Definitionscoooeeiciiniii e
3.3.1 IEEE NON-AWAIe TESHSoooiiiiieiieeeereee et e,
3.3.2 IEEE AWAre TeSIS ...occceeeeeeieceieiee ettt st
3.3.3 MiSCellaneouS TESES ..occiviciireeeirie et
34 Detailed Instruction Descriptionscccceviiiiiiiininienineceeeens
3.4.1 MC68020/MC68881 Addressing Modesccccvvuiniiniiennicciienienns
3.4.2 Instruction Definition FOrmatccooveviveeeiieiiinnin s
3.4.2.1 Operation Tablesccccvvveiverinieeie e
3.4.2.2 NANS Lottt et et e et e s e ese e s s e sse e saeeae st eabe s eesneesreenee e
3.4.2.2.1 Non-Signaling NANS.......ccccoiiiiiinin e,
3.4.222 Signaling NANS......ooiiiee e
3.4.23 Operation Post ProCessingc.ceeceveeriniiiminnnnriesseneeieneenns
3.4.2.3.1 Setting Floating-Point Condition Codes..........cccocevviriuinnnns
3.4.2.3.2 Underflow, Round, OVErfloW.......ccccceeeeierieeierirneeeeeeeessenene
3.43 Individual Instruction Descriptionscccccvviiviiicninnennieeenienn
35 Instruction Encoding Details ..o
3.5.1 Object Code FOrMaLtccccveireereierieenieee et
3.5.2 General Type Coprocessor Instruction Formatcccccvveveninene

viii

Page
Number

2-13
2-14
2-14
2-15
2-16
2-17
2-17
2-18
2-18
2-18
2-19

TABLE OF CONTENTS

(Continued)
Paragraph
Number Title
3.5.2.1 Register to Register INStructionsccccoevveeeeererecicececeereneenen
3.5.2.2 External Operand to Register Instructionsccceveevvueenee..
3.5.2.3 Move Constant to Floating-Point
Data Register Instructions............ccceceeeevevieieeeericvee e
3.5.2.4 Move to External Destination Instructionscccoveveeeueruennene
3.5.25 Move System Control Register Instructionsccccceeueeenee.
3.5.2.6 Move Multiple Floating Point
Data Registers INStruCtionSc..cccceeeeveeveevieee e
3.5.2.7 Undefined, Reserved Command Wordsc.c.cccceevcveeenennne.
3.5.3 FDBcc, FScc and FTRAPcc Instruction Formatscccccveveeee..
354 Conditional Branch Instruction FOrmatsccccoeeeeevvveeenernenenee,
3.5.5 FSAVE Instruction FOrmatcccccueeeeecviciiieceecvecee e,
3.5.6 FRESTORE Instruction FOrmatcccceieeeeeveereeeieeecieereceeenene
3.6 Instruction Format SUMMArYccoceeuiiviiiiicccee e,
3.6.1 Coprocessor ID Fieldoocuveuieeeieiececieeeeceeee ettt
3.6.2 Effective Address Field ..o
3.6.3 Register/Memory Field ...
3.6.4 Source Specifier Fieldcceevioninicccr e
3.6.5 Destination Register Fieldcccoooiiiiiieeiiecieecese e,
3.6.6 Conditional Predicate Fieldccccocoivvueeeeceieiieeeceeetee e
3.6.7 Instruction Format Diagramsccccccevveieeeeeeeeeneeeeeeceee e eeeens
Section 4
Exception Processing
4.1 MC68881 Detected EXCEPLIONS cveeveceiieecveeeererene e e eeeeens
411 EXCEPHON VECIOIS ..c.oovieiieeeriiteeeeee ettt
4.1.2 Instruction Exceptions and Trapsccccoeeeeeeeereeveeeeceeneseeeenene
4.1.2.1 Branch/Set on Unordered (BSUN)ccccooovveeereeeeieeeeeeeeeeens
41.2.2 Signalling Not-A-NUmMberc.ccoouevvvireeeececeeeeeee e,
4123 Operand Error ...t e
4124 OVEIIOW ...ttt
4125 UNAErfloOW ..o e,
4.1.2.6 Divide DY ZEr0ooeiiiiitieerceeeeee e,
41.27 INEXACt RESUIL ... et
4128 Inexact Result on Decimal Inputcccoeeeeevecrievecceneeceeeeen,
4129 Multiple EXCEPLIONScccoevreireecteeeeeee et
4.1.2.10 IEEE Compatabilitycccceevireriniiniiesiscsece et e,
413 llegal Command WOrdScccovvrieivieieecceece e
414 MC68881 Detected Protocol Violationsccceeveeeeevieiine.
415 Recovery From EXCEPONSccceveevveeiiiveecietieee e
4.2 Main Processor Detected EXCEPLIONSccccoceeevivviinivrceccreee e,
421 Trap on Coprocessor Condition Instructionscceeeeeerervennenen.

Page
Number

TABLE OF CONTENTS

(Continued)
Paragraph
Number Title
422 lllegal INStrUCtONSocceiiiiiiiiieec e,
423 MC68020 Detected Protocol Violationscccceciieniniiicnicnn
424 Trace EXCEPONSccccvviiiiiiiiinticcie e
4.25 INTEITUPES .ttt s
4.2.6 Address and BUS EITOrSccceeevivirriiieninninsine e
427 Privilege Violationsccocovveiiiininiiinncie s
4.2.8 Format Error EXCEPONS ..c.ccevieieniviineiinenicie st snsnas
43 Context SWItChING ..c.eceeeiire st s
4.3.1 FSAVE and FRESTORE Instructions, Overviewccccocceuvinnne
432 StAtE FraAmMEeS .ooveiciicieieee ettt
4.3.2.1 NUIE State ..ot s
4322 1A18 SHAE ..ot s
4323 BUsy Statecccoveveirieirii e
43.3 FSAVE and FRESTORE Protocolsccccoeevivereiiineninciceniinns
43.3.1 FSAVE ProtoCOl ...cceeeiiiireircietne s
433141 Reset Phasecccvvieiicincnenintcc e
4.3.3.1.2 IdIE PRASE ...ttt
43.3.1.3 INitial PRASE ..ocvieceieeeie et e
43.3.1.4 Middle Phase.......cccocervmeriniinieiieeec s
43.3.1.5 ENd PRaSE......coiiiiieiie ettt et
4332 FRESTORE ProtoCo!lcccvieeeierierieniee st
4.3.4 Context Switching Summary ..o e
Section 5
Coprocessor Interface
5.1 Coprocessor Interface Signal Connectioncccceveeiniiciiiiiecn
5.1.1 Chip-Select DeCOodecoceeeeeeireriieceeiee et
51.2 Coprocessor Interface Registers ...,
5.1.2.1 Response CIR ($00) ..cueveeeiieereemere et
5.1.2.2 Control CIR ($02) ...vecereeeceeeetcie et
5.1.2.3 Save CIR ($04) .ovoeiieeeiereee et s
5.1.24 Restore CIR ($06)occcerirvereiiienciiiretcieieere st
5.1.25 Operation Word CIR ($08) -.ccevvevereririeire e
5.1.2.6 Command CIR ($OA) ..ottt
5.1.2.7 Condition CIR ($OE) et
5.1.2.8 Operand CIR ($10) .ccovvevrirciieecccrse s
5.1.2.9 Register Select CIR ($14) ..o
5.1.2.10 Instruction Address CIR ($18) ..ccoveivevririciimiiiiiirsee e,
5.1.2.11 Operand Address CIR ($1C) .o
5.1.3 Interprocessor Transfers ..o
52 Coprocessor INSruCtioNScccccveii i
5.2.1 INSLrUCLION ProtOCO! ...ocvieieciieeie ettt e

Page
Number

TABLE OF CONTENTS

(Continued)

Paragraph Page
Number Title Number
5.2.2 Response Primitivescccccoieriiieeiiencneeee e, 5-9
5.2.2.1 NUIL PHAMIBIVE oo, 5-11
5222 Evaluate Effective Address and Transfer Data Primitive 5-12
5223 Transfer Single Main Processor Register Primitive 5-14
5224 Transfer Multiple Coprocessor Registers Primitive 5-15
5.2.25 Take Exception Primitivesccocevevieniineereesieceece e, 5-16
5.2.2.5.1 Take Pre-Instruction Exception Primitivecccovvveneee. 5-17
52252 Take Mid-Instruction Exception Primitivec..ccoecevieennee 5-18
52.2.6 Response Primitive SUMMArYccccoviieniierenee e 5-19
53 INStrUCtion Dialogs ...oceeeivieiieieeiiee sttt 5-19
5.3.1 General INSIIUCHONS ...cccccririeieeeeieeeee et eres 5-21
5.3.1.1 Register-to-Register (OPCLASS 000)ccoeevrvereruerienieneceens 5-22
5.3.1.2 External-to-Register (OPCLASS 010) ..ccceceevveceereeeeerereerenee. 5-22
5.3.1.3 Register-to-External (OPCLASS 011) ..ocoeievieieeeee e 5-24
53.1.4 Move Control Registers (OPCLASS 100 and 101) 5-25
5315 Move Multiple FPn (OPCLASS 110 and 111) .cccoovvvvvieeennen, 5-26
5.3.2 Conditional INSTrUCIONSccceriveeeirieeiri e 5-27
5.3.3 Context Switch INStructionscccccceeieveveniecereceeee e 5-28
5.3.3.1 FSAVE .ottt ettt st s, 5-28
5.3.3.2 FRESTORE ...ttt ettt ettt ev b et et 5-30
534 Exception ProCessingccceeeeecererenienieee ettt s, 5-30
5.3.4.1 Take Pre-Instruction Exceptioncccccovevivvviecieceniesrie e, 5-31
5.3.4.2 Take Mid-Instruction EXCEPONccvveeevviieviiieceie e 5-32
5.3.4.3 Mid-Instruction Interruptccccoveieieier e 5-32
53.4.4 Take BSUN EXCEPHON ...c.coviiiiiiiriesee et 5-33
5.3.4.5 F-Line Emulator EXCeptioncccvecveeveecieciiceeeeeeeree e, 5-34
5.3.4.6 Format Exception, FSAVE Instructionccccecevencenirnennnnnn. 5-35
5347 Format Exception, FRESTORE Instructionccccoeeveeveeneenen. 5-35
Section 6
Instruction Execution Timing
6.1 Factors Affecting Execution Timescccccvieviecevecvesieveeceeeeeee, 6-1
6.1.1 Instruction Start-up Phasecccocooviiveinvnieseeecee e, 6-3
6.1.2 Calculation PRESEccoceeiiiieeeeieeecteeceere et 6-3
6.1.3 Round/Store Result Phasecccoeeeivrevieecriee e 6-4
6.2 Concurrent Instruction Executioncccoeevrieceececieceiece e, 6-4
6.3 Interrupt Latency TiMEeScccoovererirrteeenee e, 6-5
6.4 Coprocessor Interface Overheadcccccooveviiinieniceneceneeieee 6-6
6.5 Execution Timing Tablesccocevveverrmriiiecise e 6-9
6.5.1 Timing Tables for Typical EXecutioncceeeeeeviveeeeeeeesreennene 6-11
6.5.1.1 Effective Address Calculationscccccevvvvviirneeccencesiesnennen, 6-12
6.5.1.2 Arithmetic Operationscccecceeievtenieniirine s, 6-13

Xi

TABLE OF CONTENTS

(Continued)

Paragraph Page
Number Title Number
6.5.1.3 Move Control Register and FMOVEM Operations 6-15
6.5.1.4 Conditional INStructionsccoeceeeviiiiieeiccnii e 6-16
6.5.1.5 FSAVE and FRESTORE Instructionscccoevvvevvcecennnne 6-17
6.5.2 Detail Timing Tablesccccecceeriiiirieeeee e 6-18
6.5.2.1 INStruction Start-Upcoccvvevereririecirece e 6-24
6.5.2.2 Transfer OPerandccceecveereeieeieiienene et 6-25
6.5.2.3 Input Operand CONVErSIONcoceeveeveeierienieeeee e 6-26
6.5.2.4 Arithmetic Calculationccccocveeoiiienineec e 6-28
6.5.2.5 Output Operand CONVETSIONccceeerieeertrierieieeeieee e, 6-33
6.5.2.6 Rounding and Exception Handlingccccceevevvinnininccnneenne 6-34
6.5.2.7 Conditional Terminationcoeoeveecenneciininereeee e 6-36
6.5.2.8 Multiple Register Transfercccocoiiiiiniinniinncees 6-37
6.5.2.9 State Frame Transfercccoerinenenenenceieeeiec e 6-38
6.5.2.10 EXCeption ProCessingcoecerererinieninne e seenie e, 6-39

Section 7
Functional Signal Descriptions
7.1 Address Bus (AQ through A4) ..., 7-1
7.2 Data Bus (DO through D31) ... 7-2
7.3 SiZ€ (SIZE) ot 7-3
7.4 Address Stobe (AS) ..o 7-3
75 REAA/WIItE (RW) ..ot e 7-3
7.6 Chip SEIECE (CS) vttt e 7-3
7.7 Data Strobe (DS) eeeeerrerrerrerereeeeiseiremserssisessns e eieesseessnses s ssesenssesens 7-3
7.8 Data Transfer and Size Acknowledge (DSACKO, DSACK1) 7-4
7.9 Reset (RESET) 7-5
7.10 Clock (CLK) 7-5
7.11 Sense Device (SENSE)occovvveeiiiiieecenie e 7-5
7.12 Power (VEC and GND)ocooeerenierie s 7-5
7.13 NO CONNECE (NC) ..ottt 7-6
7.14 SigNal SUMMANY ...coeeeririieiirccerere e s 7-6
Section 8
Bus Operation
8.1 Basic Transfer Mechanism OVerviewccccccvvviineniinninic e 8-1
8.1.1 32-Bit POMt SIZ€ .coveeieiiirierieie et e 8-3
8.1.2 16-Bit PO SiZ€ ..oovieieeceeeeceeeeete e b, 8-4
8.1.3 8-Bit POIt SiZE ..oeveeeieieee ettt s 8-5
8.2 ReSet OPErationcccvcevevcreeriri et s e 8-6
8.3 Bus Cycle Functional Descriptionsccccvvveviiiinineniiiecenieicnns 8-7
8.3.1 Chip Select TIMINGccceoieereierererce i 8-7
8.3.2 Synchronous Read CyCIesccocovreriniiiniiciii e 8-8

xii

(Concluded)
Paragraph Page
Number Title Number
8.3.3 ASYNChronous BUS CYCIEScccoeveeeereeiieeieeeerieeeeeve e eveerees 8-10
8.3.3.1 Asynchronous Read CyClesc.ccovevveeienereeiesieeceece e 8-10
8.3.3.2 Asynchronous Write CYCIESccceveveeieireniereeieienre e, 8-12
8.4 Inter-Cycle Timing ReStriCtioNSccccoceevevererieesiereireee et 8-13
8.5 Coprocessor Interface Protocol Restrictionscceeveveeeevereivinnens 8-13
8.6 Use 0of the SENSE PN ..c.oceeieiieereccs ettt 8-14
8.7 Power and Ground Considerationsccccoeeeveeveereiiesreereenereereseeees 8-15
Section 9
Interfacing Methods
9.1 MCE8881-MCB8020 INterfacingccceeeevererreeresririenreriete e eeveeereens 9-1
9.1.1 32-Bit Data Bus Coprocessor COnnectionccceceeueeeeerveieecnenns, 9-1
9.1.2 16-Bit Data Bus Coprocessor Connectionccceocevereeeeverennne 9-1
9.1.3 8-Bit Data Bus Coprocessor Connectioncccceeeereereeecenevennes 9-1
9.2 MC68881-MC68000/MC68008/MC68010/MC68012 Interfacing 9-3
9.2.1 16-Bit Data Bus Peripheral Processor Connectionc........... 9-3
9.2.2 8-Bit Data Bus Peripheral Processor Connectionccccceeueee. 9-4
9.3 Peripheral Processor Operationcccveeeeevenieneincesneesesieseenenns 9-5
Section 10
Electrical Specifications
10.1 Maximum RatiNgScccocerieiirieieie ettt et s 10-1
10.2 Thermal Characteristics - PGA Packageccceeveuveereeesresieseniniennnns 10-1
10.3 Power Considerationsccceeeveerrneinenerceeieeie et 10-1
10.4 DC Electrical Characteristicscvvverrrierirerireneseeeesieseseeseesaseesens 10-2
10.5 AC Electrical Characteristics - CIoCk INPULccccoovririreeririririe, 10-3
10.6 AC Electrical Characteristics - Read and Write Cyclescccoueu...... 10-4
Section 11
Ordering Information and Mechanical Data
Standard MC68881 Ordering Informationc.ccccovveeceeceeinvcvnnnnnn, 11-1
Pin ASSIGNMENtcoovviiiiiic e, 11-1
Package DIMENSIONSccccceveriviirrieeerinienieniesree e et s e estesees e ennns 11-2
APPENDICES
A Glossary of TEIMS ..ot s A-1
B Abbreviations and ACTONYMScccceeeveireeriierieinierreeieesseee e see e, B-1

TABLE OF CONTENTS

Xiii

Figure
Number

— h b e eh b —h —h A
©CoUbhhbr =

NNNNII\)NI\)NN
OCoONOOMHhWN =

2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-17

LIST OF ILLUSTRATIONS

Page
Title Number

MC68881 Programming Model ... 1-4
Exception Status/Enable Byte ... 1-4
Mode Control BYteccceevereriereeie i, 1-5
Condition Code BYteccovereeiriiiiiicii e 1-5
QUOLIENT BYLE ..cvviveieeeieececrirccic et 1-5
Accrued Exception Byteccccceveiiiiriinneniiiic 1-5
Typical Coprocessor Configurationccooeveeicnieiivenineninne, 1-6
MC68881 Simplified Block Diagramccccecevuiermninnrinienriniensiniennnns 1-7
MC68881 Data Format SUMMArycccccevviniininininicninseeeec e 1-12
MC68881 Programming Modelccccoviviiiiinniiininiciecienicceee e 2-1
MC68881 FPCR Exception Enable Byte ..o 2-2
MC68881 FPCR Mode Control Bytec.cceeveiiiiiiiciicniiiiieieee 2-3
MC68881 FPSR Condition Code Bytecccoocviiiiiiviniiiiicies 2-5
MC68881 FPSR Quotient Byteccccoevininiceiniiiiienenecicicieie, 2-6
MC68881 FPSR Exception Status Byteccccvviiviiininiicas 2-7
MC68881 FPSR Accrued Exception Byte ..., 2-8
Signed Integer Data FOrmatscccocoemeenininiiciieceeee 2-10
Memory Formats for Real Data Formatscccccoeviiinininicnienieniene. 2-11
Format of Normalized NUMDErSccccoceviiiiiiininciic e, 2-13
Format of Denormalized NUMDErScccoocviviiniiiircci, 2-13
FOrmMat Of ZErO ...ceveveeeeeeieieeer et 2-14
Format of INfinitycccooueeiiiiie e, 2-14
Format of NOt-A-NUMDETSccvverrireicci e 2-15
Floating-Point Data Type SUMMArYcccocveviineiiiiniiiinseee e, 2-16
Intermediate Result Format ... 2-17
Packed Decimal Floating-Point Data Formatc.cccocceeviiiiiiiinninins 2-22
Instruction Description FOrmatccoceeverninnenncniccciie e, 3-15
Operation Table Example (FADD Instruction)cccccevveniiniincncinnns 3-16
EXC and ENABLE Byte Bit ASSIGNMENtSccccoceeerrervcrminecrisierineesnens 4-4
Intermediate Result Format ..., 4-14
Rounding AlGOrithmcccoeiiiiiiiniic e, 4-16
MCB68881 State Frame FOrMatSccoeveeeeviererireeiee e 4-25
BIU Flag FOMMALc.coeriiiririeiiictinir ittt 4-31
Full Context Save/Restore Instruction Sequencesccccceevviinnenn, 4-38

xiv

LIST OF ILLUSTRATIONS

(Continued)
Figure Page
Number Title Number

5-1 MC68020 Address Bus Encoding for

COPrOCESSOr ACCESSES ..uvvevrrrrierereruiieiieieeseeesesseeseesesssesssesssessssssess 5-2
5-2 MC68881 Coprocessor Interface Register Mapc.cccecerveceveecennens, 5-3
5-3 Control CIR Bit ASSIGNMENTccociirririirerieeeiee et 5-4
5-4 Operand CIR Data AlIGNnmentccccooeeeieneneneiienesiesreeeeeeseeeeseeseens 5-7
5-5 Coprocessor Instruction General FOrmatccceevevveeeeeeeeerieneeenenen. 5-8
5-6 MC68881 Instruction Operation Wordccccveveveenveniennrinrecene e 5-8
5-7 M68000 Coprocessor Response Primitive General Format 5-10
5-8 Null Primitive FOrMatccoveiiiieeie et er e 5-11
5-9 Evaluate Effective Address and

Transfer Data Primitive Formatcccoovivevininnnienie e 5-12
5-10 Transfer Single Main Processor Register

Primitive FOrmMat ...t s 5-14
5-11 Transfer Multiple Coprocessor Registers

Primitive FOMMALcccoirieiiict et e 5-15
5-12 Transfer Multiple Floating-Point Data Registers

to Stack EXAMPIEcociiiiiiieecee ettt 5-16
5-13 Take Pre-Instruction Exception Primitive Formatc.ccceveeevevecnens 5-17
5-14 Pre-Instruction Exception Stack Framecccocveevevevrcnneeccn e, 5-18
5-15 Take Mid-Instruction Exception Primitive Formatc.ccecceevervieeveenenne 5-18
5-16 Mid-Instruction Stack Frameccccviriieiieiiiniinnienienie e sres e seeeeene 5-19
5-17 Register-to-Register Instruction Dialogccccceeeeveeienierierniereencnneenne 5-23
5-18 External-to-Register Instruction Dialogccccceererveriieeicenicenneeieesnenns 5-23
5-19 Register-to-External Instruction Dialogccceeeviecvvveieneeceriecerienna. 5-24
5-20 Move Control Register Instruction Dialogccocceeeveeeervrreerieseenenn. 5-26
5-21 Move Multiple Floating-Point Data Registers

INStrUCtion Dialog ...eeeveeeeiiieieiie ettt 5-27
5-22 Conditional Instruction Dialogceccceveeirriecerrerniererie e s 5-28
5-23 FSAVE Instruction Dialogcccoeeriiimiiririeenenieeie et 5-29
5-24 FRESTORE Instruction Dialogcccceeeirrieeiiieeceiecieeesiieceeeeseneese e, 5-30
5-25 Take Pre-Instruction Exception Dialogccceceveeveireeeecceercieeeceie s 5-31
5-26 Take Mid-Instruction Exception Dialogccccceceevveevieeirecireeieeiie e, 5-32
5-27 Mid-Instruction Interrupt Dialogccccoeeevieiieiiierienie e 5-33
5-28 Take BSUN Exception Dialogccccvererereriiienirieerseeieseesesensseenens 5-34
5-29 Take F-Line Emulator Exception Dialogccccceveeveerrecesrereenriereereennns 5-35
5-30 FSAVE Format Exception Dialogcccceveveeinieesienseesseeeceese e sve e 5-36
5-31 FRESTORE Format Exception Dialogc.ccoouvverereeirseesesienieseseneenn, 5-36
6-1 Concurrent MC68020/MC68881 Instruction Executionccccccue.. 6-4
6-2 Non-Concurrent Instruction Execution, Interrupts Allowed 6-6
6-3 Best-Case Coprocessor Interface Overhead Timingcccocevvvveenene. 6-8
6-4 Worst-Case Coprocessor Interface Overhead Timingc.cccceveevenene, 6-8

XV

LIST OF ILLUSTRATIONS

(Concluded)

Figure Page

Number Title Number
6-5 Instruction Overlap Examples — FMOVE.X FPm,FPn...........cccccceevnn. 6-21
6-6 Instruction Overlap Example — FMOVE.S (An),FPn.......cccccovecinnnnn. 6-23
7-1 MC68881 Input/Output Signalsccceeervmieeieiinine i 7-1
8-1 MC68881 Data Bus Bit ASSIQNMENtScccovevriiiiiiinii e, 8-2
8-2 Data Bus Activity versus Port Size and Operand Alignment 8-2
8-3 MC68881 Reset Logic Exampleccceveviiviiiiniininiiiniecicie e, 8-6
8-4 Synchronous Read Cycle Timing Diagramcccoevniiininniiccnene, 8-9
8-5 Asynchronous Read Cycle Timing Diagramcccccoeeeiicicnriciennns 8-11
8-6 Asynchronous Write Cycle Timing Diagramcccoevviiniiinieincns, 8-12
8-7 Sense Device Circuit Example ... 8-14
9-1 32-Bit Data Bus Coprocessor Connectioncccooeeeieeieniiiiinenen, 9-2
9-2 16-Bit Data Bus Coprocessor Connectioncceeveeeveninveniccnen, 9-2
9-3 9-Bit Data Bus Coprocessor Connectioncccceveieieniiiiiciincenninn 9-3
9-4 16-Bit Data Bus Peripheral Processor Connectioncccccccvnnnen. 9-4
9-5 9-Bit Data Bus Peripheral Processor Connectioncccccoeieennn. 9-5
10-1 TSt LOAAS ..oeiiiiiiiiiiicec et 10-3
10-2 Clock Input Timing Diagram ..o, 10-3
10-3 Asynchronous Read Cycle Timing Diagramccoevvviivnenncnnennn, Foldout 1
10-4 Asynchronous Write Cycle Timing Diagramccccoceeneiieniiineniecienen, Foldout 2
10-5 Synchronous Read Cycle Timing Diagramccococcenniinnnicnincnennn, Foldout 3

XVi

Table Page
Number Title Number
1-1 Exponent and Mantissa SizeS.........ccoeeveiieriieinceiiiiesincee e 1-10
2-1 Condition Code versus Result Data TYPEccceeeuvreereieeereeeseeeseeeeee e 2-5
2-2 Single Precision Binary Real Formatc.cocconeiiincincienincce e, 2-19
2-3 Double Precision Binary Real Formatccocoiiiiiiiiiniincncnees 2-20
2-4 Extended Precision Binary Real Formatc.ccooceeiiiecininiinicnienenns 2-21
2-5 Decimal String Type Definitionsccooceeveiiieniieeieereeeie e 2-22
3-1 Data Movement Operationsccoceceeveerienienieniesieeeeeseese s seee e 3-2
3-2 Dyadic Operation FOrmatcc.coceeveeirieenienincne e e, 3-3
3-3 Dyadic Operationsccccuieieiiintineee e s e 3-3
3-4 Monadic Operation FOrMatc.cccoecerirmircinnienie e ee e eseeseeae 3-4
3-5 Monadic OPErationSccoceeceerireiente ettt et snee e 3-4
3-6 Dual Monadic Operation Formatc.cccoveemerenecnncernnninencceeennenns 3-4
3-7 Program Control Operationsc.cccecceeieiieeineie et 3-5
3-8 Conditional Test MNemORICSccccoouevieiiiiieeneii e 3-6
3-9 System Control OPerationsccccceeeririienienie e 3-6
3-10 Effective Addressing Mode Categoriesccoeveevvriicnnennceiniccccnne, 3-14
3-11 General Type Instruction Command Word Fieldscccoevvecrinenene 3-126
3-12 Extension Field Encoding, Arithmetic Operationscccoceeenencae, 3-128

3-13 Length and Allowed <ea> for External-to-Register

Arithmetic INStrUCONS ...ccveieiec s 3-130
3-14 Length and Allowed <ea> for Register-to-External

INSEPUCHIONS ..covviiiiiee ettt 3-132
3-15 Extension Field Encodings for Register-to-Memory

MOVE INSITUCHIONS ...vieiiiieee ettt e 3-133
3-16 Encodings for Move FPcr Operationscccoovererinnenniisececinnieeeeens 3-135
3-17 Encodings for Move Multiple FPn Operationscccooveiiiinccnnennn, 3-137
3-18 Encodings for the FDBcc, FScc, and FTRAPcc Instructions 3-138
3-19 Conditional Predicate Evaluation ResSponsesccccovviivvecnncnnen, 3-140
3-20 Effective Address Field Encoding Summarycccocceeevnccnccnninnnenn, 3-143
3-21 Conditional Predicate Field Encoding Summaryccccceoeevevninneeennenn. 3-145
4-1 MC68881 Exception Vector ASSIgNMENESccoceevevmvrciieiiinniinieninne 4-4
4-2 Possible Operand EITOrScccviivienieninieneesesise e s 4-7
4-3 Divide-by-Zero Exception INStructionsccccceeeeviieniincneiniineiinens 4-13
4-4 BIU Flag Bit Definitionsccoceiviiiiiiiiiiiiiccn s 4-32

Xvii

Table
Number

4-6
5-1
5-3
5-4
5-5
5-7
7-1

7-3
7-4

8-1

LIST OF TABLES

(Continued)
Page
Title Number

MC68881 Responses to Save Commandscceeeveeeniiiniiieienniinnn, 4-34
MC68881 Format Word Definitionscccceceeveriineininiii e, 4-35
MC68020 CPU Space Type Field Encodingccccoceenicncnnnnnnnen. 5-2
Coprocessor Interface Register Characteristicsccocevvvvciinennn, 5-3
Null Primitive ENCOTINGS ..veeeeeiereereeiererene ettt 5-11
Coprocessor Valid Effective Address Codesccoceveviniininiencnninne. 5-13
Evaluate Effective Address and Transfer Data Encodingcc.......... 5-14
MC68881 Vector NUMDEIScccoerveeireeireeieeree et 5-17
MC68881 Primitive RESPONSESccviveriiiiiiiiiciercie e, 5-20
Coprocessor Interface Register Selection ..., 7-2
System Data Bus Size Configurationccccovvvivninncciinncnennee, 7-2
DSACK ASSEIIONSocvieuieuieteieeeieseeneeseeerr e s eess e s srebesasnesreaens 7-4
SigNal SUMMANY ..coeeereeeeeeeree et s sreaen, 7-6
Vce and GND Pin ASSIGNMENES .c.eovvveriereiiiiiciiceis s, 8-15

xviii

SECTION 1
GENERAL DESCRIPTION

The MC68881 floating-point coprocessor is a full implementation of the IEEE Standard for
Binary Floating-Point Arithmetic (proposed by Task P754) for use with the Motorola M68000
Family of microprocessors. It is implemented using VLSI technology to give systems
designers the highest possible functionality in a physically small device.

Intended primarily for use as a coprocessor to the MC68020 32-bit microprocessor unit
(MPU), the MC68881 provides a logical extension to the main MPU integer data processing
capabilities. It does this by providing a very high performance floating-point arithmetic unit
and a set of floating-point data registers that are utilized in a manner that is analogous to the
use of the integer data registers. The MC68881 instruction set is a natural extension of all
earlier members of the M68000 Family, and supports all of the addressing modes of the host
MPU. Due to the flexible bus interface of the M68000 Family, the MC68881 can be used
with any of the MPU devices of the M68000 Family, and it may also be used as a peripheral
to non-M68000 processors.

The major features of the MC68881 are:

+ Eight general purpose floating-point data registers, each supporting a full 80-bit
extended precision real data format (a 64-bit mantissa plus a sign bit, and a 15-bit
signed exponent).

* A 67-bit arithmetic unit to allow very fast calculations, with intermediate precision
greater than the extended precision format.

* A 67-bit barrel shifter for high-speed shifting operations (for normalizing etc.).

« Forty-six instructions, including 35 arithmetic operations.

* Full conformation to the IEEE P754 standard, including all requirements and
suggestions.

+ Support of functions not defined by the IEEE standard, including a full set of
trigonometric and trancendental functions.

+ Seven data types: byte, word and long integers; single, double, and extended
precision real numbers; and packed binary coded decimal string real numbers.

+ Twenty-two constants available in the on-chip ROM, including =, e, and powers of 10.

+ Virtual memory/machine operations.

« Efficient mechanisms for procedure calls, context switches, and interrupt handling.

« Fully concurrent instruction execution with the main processor.

« Use with any host processor, on an 8-, 16-, or 32-bit data bus.

1-1

1.1 THE COPROCESSOR CONCEPT

The MC68881 functions as a coprocessor in systems where the MC68020 is the main
processor via the M68000 coprocessor interface. It functions as a peripheral processor in
systems where the main processor is the MC68000, MC68008, MC68010, or MC68012.

The MC68881 utilizes the M68000 Famiiy coprocessor interface to provide a logical
extension of the MC68020 registers and instruction set in a manner which is transparent to
the programmer. The programmer perceives the MC68020/MC68881 execution model as if
both devices were implemented on one chip.

A fundamental goal of the M68000 Family coprocessor interface is to provide the
programmer with an execution model based upon sequential instruction execution by the
MC68020 and the MC68881. For optimum performance, however, the coprocessor interface
allows concurrent operations in the MC68881 with respect to the MC68020 whenever
possible. In order to simplify the programmer's model, the coprocessor interface is designed
to emulate, as closely as possible, non-concurrent operation between the MC68020 and the
MC68881.

The MC68881 is a non-DMA type coprocessor which uses a subset of the general purpose
coprocessor interface supported by the MC68020. Features of the interface implemented in
the MC68881 are as follows:

» The main processor(s) and MC68881 communicate via standard M68000 bus
cycles.

+ The main processor(s) and MC68881 communications are not dependent upon the
instruction sets or internal details of the individual devices (e.g., instruction pipes or
caches, addressing modes).

« The main processor(s) and MC68881 may operate at different clock speeds.

+ MC68881 instructions utilize all addressing modes provided by the main processor;
all effective addresses are calculated by the main processor at the request of the
coprocessor.

- All data transfers are performed by the main processor at the request of the
MC68881; thus memory management, bus errors, address errors, and bus arbitration
function as if the MC68881 instructions are executed by the main processor.

+ Overlapped (concurrent) instruction execution enhances throughput while
maintaining the programmer's model of sequential instruction execution.

» Coprocessor detection of exceptions which require a trap to be taken are serviced by
the main processor at the request of the MC68881; thus exception processing
functions as if the MC68881 instructions were executed by the main processor.

» Support of virtual memory/virtual machine systems is provided via the FSAVE and
FRESTORE instructions.

+ Up to eight coprocessors may reside in a system simultaneously; muitiple
coprocessors of the same type are also allowed.

+ Systems may use software emulation of the MC68881 without reassembling or
relinking user software.

1.2 HARDWARE OVERVIEW

The MC68881 is a high performance floating-point device designed to interface with the
MC68020 as a coprocessor. This device fully supports the MC68020 virtual machine
architecture, and is implemented in HCMOS, Motorola's low power, small geometry process.
This process allows CMOS and HMOS (high density NMOS) gates to be combined on the
same device. CMOS structures are used where speed and low power is required, and
HMOS structures are used where minimum silicon area is desired. Using this technology
enables the MC68881 to be very fast while consuming little power, and still have a
reasonably small die size.

With some performance degradation, the MC68881 can also be used as a peripheral
processor in systems where the MC68020 is not the main processor (e.g., MC68000,
MC68008, MC68010, MC68012). The configuration of the MC68881 as a peripheral
processor or coprocessor may be completely transparent to user software (i.e., the same
object code may be executed in either configuration).

The architecture of the MC68881 appears to the user as a logical extension of the M68000
Family architecture. Because of the coupling of the coprocessor interface, the MC68020
programmer can view the MC68881 registers as though the registers are resident in the
MC68020. Thus, a MC68020/MC68881 device pair appears to be one processor that
supports seven floating-point and integer data types, and has eight integer data registers,
eight address registers, and eight floating-point data registers.

The MC68881 programming model is shown in Figures 1-1 through 1-6, and consists of the
following:
« Eight 80-bit floating-point data registers (FPO-FP7). These registers are analogous to
the integer data registers (D0-D7) and are completely general purpose (i.e., any
instruction may use any register).

* A 32-bit control register that contains enable bits for each class of exception trap, and
mode bits to set the user-selectable rounding and precision modes.

+ A 32-bit status register that contains floating-point condition codes, quotient bits, and
exception status information.

* A 32-bit instruction address register that contains the main processor memory
address of the last floating-point instruction that was executed. This address is used
in exception handling to locate the instruction that caused the exception.

1-3

79 63 0

FPO
FP1
FP2

FP3 Floating Point
FP4 Data Registers

FP5
FP6
FP7

31 23 15 7 0

i 0 E’éfa"gig"l Qlode. IFPCR Control Register

Condition
Code

[j FPIAR Instruc}:::lor? Address
egister

. Exception | Accrued H
IQuotlem Stonus Empﬁonl FPSR Status Register

Figure 1-1. MC68881 Programming Model

15 14 13 12 11 10 9 8
| Bsun | snan |opernr| oveL | unrL | Dz |iNEx2 | INEX1 |

INEXACT DECIMAL INPUT
INEXACT OPERATION
DIVIDE BY ZERO
UNDERFLOW

OVERFLOW

OPERAND ERROR
SIGNALLING NOT A NUMBER

BRANCH/SET ON UNORDERED

Figure 1-2. Exception Status/Enable Byte

1-4

I ROUNDING MODE:
00 TO NEAREST
01 TOWARD ZERO
10 TOWARD MINUS INFINITY
11 TOWARD PLUS INFINITY

31

ROUNDING PRECISION:
00 EXTENDED
01 SINGLE
10 DOUBLE
11 (UNDEFINED, RESERVED)

Figure 1-3. Mode Control Byte

30 20 28 27 26 25 24
[[z T [nan |

NOT A NUMBER OR UNORDERED
INFINITY

ZERO

NEGATIVE

Figure 1-4. Condition Code Byte

23 22 21 20 19 18 17 16
[s | QUOTIENT
l SEVEN LEAST SIGNIFICANT
BITS OF QUOTIENT
SIGN OF QUOTIENT
Figure 1-5. Quotient Byte
7 6 5 4 3 2 1 0
[1op Jovr [unrl | bz | mex | 0
L INEXACT
DIVIDE BY ZERO
UNDERFLOW
OVERFLOW
INVALID OPERATION

Figure 1-6. Accrued Exception Byte

1-5

The connection between the MC68020 and the MC68881 is a simple extension of the
M68000 bus interface. The MC68881 is connected as a coprocessor to the MC68020, and
the selection of the MC68881 is based upon a chip select (CS), which is decoded from the
MC68020 function codes and address bus. Figure 1-7 illustrates the MC68881/MC68020
configuration.

| K Y
ADORESS MC68881
DECODE - FLOATING POINT 110 MEMORY
COPROCESSOR

N INION NN O

FUNCTION CODES

MCE8020 BUS
PROCESSOR AODRESS IS ™ EXTENSION

2 D

Figure 1-7. Typical Coprocessor Configuration

As shown in Figure 1-8, the MC68881 is internally divided into three processing elements;
the bus interface unit (BIU), the execution control unit (ECU), and the microcode control unit
(MCU). The BIU communicates with the MC68020, and the ECU and MCU execute all
MC68881 instructions.

The BIU contains the coprocessor interface registers, and the 32-bit control, status, and
instruction address registers. In addition to these registers, the register select and DSACK
timing control logic is contained in the BIU. Finally, the status flags used to monitor the status
of communications with the main processor are contained in the BIU.

The eight 80-bit floating-point data registers (FP0O-FP7) are located in the ECU. In addition to
these registers, the ECU contains a high-speed 67-bit arithmetic unit used for both mantissa
and exponent calculations, a barrel shifter that can shift from 1 bit to 67 bits in one machine
cycle, and ROM constants (for use by the internal algorithms or user programs).

The MCU contains the clock generator, a two-level microcoded sequencer that controls the
ECU, the microcode ROM, and self-test circuitry. The built-in self-test capabilities of the
MC68881 enhance reliability and ease manufacturing requirements; however, these
diagnostic functions are not available to the user.

1-6

MCU
oK BIU !

e We
Coprocessor Built In Self Clock Generator
E‘ - Interface Register Test Registers
m Select And DSACK
[id Control
o nPC Stack
g RE'SETl
< HPC Select uPC
2 Control CIA PLA | »{ Multiptexor WPC
|k1’
ﬁ_ Restore CIR ? t ROM
| i d
g Swve CR I:E.tAr:clmn Decode
3 ¥
I & lm nROM
gl g
of |g |3 Instruction Decode
e - S Register
[=} @
=% ‘ec‘ LR LA ARAAAARAAAAAAARAARR]
8| (2] |8 Status Flags =—¥> = E = SRE ECU
LA A A 5 2 LR | 2] e e s e <
Command/Condition CIR 2 2 » 13 g n
el lE B0
© 0 3 8 E
o=
S £ g
52 §
Instruction Address CIR > a
c
=
Ve —¥ S
GNOL';: > Operand CIR f
Register Select CIR Round Logic

Figure 1-8. MC68881 Simplified Block Diagram

1.2.1 Bus Interface Unit

All communications between the MC68020 and the MC68881 occur via standard M68000
Family bus transfers. The MC68881 is designed to operate on 8-, 16-, or 32-bit data buses.

The MC68881 contains a number of coprocessor interface registers (CIRs) which are
addressed in the same manner as memory by the main processor. The M68000 Family
coprocessor interface is implemented via a protocol of reading and writing to these registers
by the main processor. The MC68020 implements this general purpose coprocessor
interface protocol in hardware and microcode.

When the MC68020 detects a typical MC68881 instruction, the MC68020 writes the
instruction to the memory-mapped command CIR, and reads the response CIR. In this
response, the BIU encodes requests for any additional action required of the MC68020 on
behalf of the MC68881. For example, the response may request that the MC68020 fetch an
operand from the evaluated effective address and transfer the operand to the operand CIR.
Once the MC68020 fulfills the coprocessor request(s), the MC68020 is free to fetch and
execute subsequent instructions.

1-7

A key concern in a coprocessor interface that allows concurrent instruction execution is
synchronization during main processor and coprocessor communication. If a subsequent
instruction is written to the MC68881 before the ECU has completed execution of the
previous instruction, the response instructs the MC68020 to wait. Thus, the choice of
concurrent or nonconcurrent instruction execution is determined on an instruction-by-
instruction basis by the coprocessor.

The only difference between a coprocessor bus transfer and any other bus transfer is that
the MC68020 issues a function code to indicate the CPU address space during the cycle
(the function codes are generated by the M68000 Family processors to identify eight
separate address spaces). Thus, the memory-mapped coprocessor interface registers do
not infringe upon instruction or data address spaces. The MC68020 places a coprocessor
ID field from the coprocessor instruction onto three of the upper address lines during
coprocessor accesses. This ID, along with the CPU address space function code, is
decoded to select one of eight coprocessors in the system.

Since the coprocessor interface protocol is based solely on bus transfers, the protocol is
easily emulated by software when the MC68881 is used as a peripheral with any processor
capable of memory-mapped /O over an M68000 style bus. When used as a peripheral
processor with the 8-bit MC68008 or the 16-bit MC68000, MC68010, or MC68012, all
MC68881 instructions are trapped by the main processor to an exception handler at
execution time. Thus, the software emulation of the coprocessor interface protocol can be
totally transparent to the user. The system can be quickly upgraded by replacing the main
processor with an MC68020 without changes to the user software.

Since the bus is asynchronous, the MC68881 need not run at the same clock speed as the
main processor. Total system performance may therefore be customized. For example, a
system requiring very fast floating-point arithmetic with relatively slow integer arithmetic can
be designed with an inexpensive main processor and a fast MC68881.

1.2.2 Coprocessor Interface

The M68000 Family coprocessor interface is an integral part of the MC68881 and MC68020
design, with the interface tasks shared between the two. The interface is fully compatible
with all present and future M68000 Family products. Tasks are partitioned such that the
MC68020 does not have to decode coprocessor instructions, and the MC68881 does not
have to duplicate main processor functions such as effective address evaluation.

This partitioning provides an orthogonal extension of the instruction set by permitting
MC68881 instructions to utilize all MC68020 addressing modes and to generate execution
time exception traps. Thus, from the programmer's view, the CPU and coprocessor appear
to be integrated onto a single chip. While the execution of the great majority of MC68881
instructions may be overlapped with the execution of MC68020 instructions, concurrency is
completely transparent to the programmer. The MC68020 single-step and program flow
(trace) modes are fully supported by the MC68881 and the M68000 Family coprocessor
interface.

1-8

While the M68000 Family coprocessor interface permits coprocessors to be bus masters, the
MC68881 is never a bus master. The MC68881 requests that the MC68020 fetch all
operands and store all results. In this manner, the MC68020 32-bit data bus provides high
speed transfer of floating-point operands and results while simplifying the design of the
MC68881.

Since the coprocessor interface is based solely upon bus cycles and the MC68881 is never
a bus master, the MC68881 can be placed on either the logical or physical side of the
system memory management unit. This provides a great deal of flexibility in the system
design.

The virtual machine architecture of the MC68020 is supported by the coprocessor interface
and the MC68881 through the FSAVE and FRESTORE instructions. If the MC68020 detects
a page fault and/or a task time out, the MC68020 can force the MC68881 to stop whatever
operation is in process at any time (even in the middle of the execution of an instruction) and
save the MC68881 internal state in memory.

The size of the saved internal state of the MC68881 is dependent upon what the ECU is
doing at the time that the FSAVE is executed. If the MC68881 is in the reset state when the
FSAVE instruction is received, only one word of state is transferred to memory, which may be
examined by the operating system to determine that the coprocessor programmer's model is
empty. If the coprocessor is idle when the save instruction is received, only a few words of
internal state are transferred to memory. If the MC68881 is in the middle of executing an
instruction, it may be necessary to save the entire internal state of the machine. Instructions
that can complete execution in less time than it would take to save the larger state in mid-
instruction are allowed to complete execution and then save the idle state. Thus the size of
the saved internal state is kept to a minimum. The ability to utilize several internal state sizes
greatly reduces the average context switching time.

The FRESTORE instruction permits reloading of an internal state that was saved earlier, and
continues any operation that was previously suspended. Restoring of the reset internal state
functions just like a hardware reset to the MC68881 in that defaults are re-established.

1.3 OPERAND DATA FORMATS

The MC68881 supports the following data formats:
Byte Integer (B)
Word Integer (W)
Long Word Integer (L)
Single Precision Real (S)
Double Precision Real (D)
Extended Precision Real (X)
Packed Decimal String Real (P)

The capital letters contained in parentheses denote suffixes added to instructions in the
assembly language source to specify the data format to be used.

1-9

1.3.1 Integer Data Formats

The three integer data formats (byte, word, and long word) are the standard data formats
supported in the M68000 Family architecture. Whenever an integer is used in a floating-
point operation, the integer is automatically converted by the MC68881 to an extended
precision floating-point number before being used. For example, to add an integer constant
of five to the number contained in floating-point data register 3 (FP3), the following
instruction can be used:

FADD.W #5,FP3
(The Motorola assembler syntax "#" is used to
denote immediate addressing.)

The ability to effectively use integers in floating-point operations saves user memory since
an integer representation of a number, if representable, is usually smaller than the
equivalent floating-point representation.

1.3.2 Floating-Point Data Formats

The floating-point data formats, single precision (32-bits) and double precision (64-bits) are
as defined by the IEEE standard. These are the main floating-point formats and should be
used for most calculations involving real numbers. Table 1-1 lists the exponent and
mantissa size for single, double, and extended precision. The exponent is biased, and the
mantissa is in sign and magnitude form. Since single and double precision require
normalized numbers, the most significant bit of the mantissa is implied as a one and is not
included, thus giving one extra bit of precision.

Table 1-1. Exponent and Mantissa Sizes

Data Exponent Mantissa
Format Bits Bits
Single 8 23(+1)
Double 11 52(+1)
Extended 15 64

The extended precision data format is also in conformance with the IEEE standard, but the
standard does not specify this format to the bit level as it does for single and double
precision. The memory format on the MC68881 consists of 96 bits (three long words). Only
80 bits are actually used, the other 16 bits are for future expandability and for long-word
alignment of floating-point data structures. Extended format has a 15-bit exponent, a 64-bit

mantissa, and a 1-bit mantissa sign.

Extended precision numbers are intended for use as temporary variables, intermediate
values, or in places where extra precision is needed. For example, a compiler might select
extended precision arithmetic for evaluation of the right side of an equation with mixed sized
data and then convert the answer to the data type on the left side of the equation. It is
anticipated that extended precision data will not be stored in large arrays, due to the amount
of memory required by each number.

1.3.3 Packed Decimal String Real Data Format

The packed decimal data format allows packed BCD strings to be input to and output from
the MC68881. The strings consist of a 3-digit base 10 exponent and a 17-digit base 10
mantissa. Both the exponent and mantissa have a separate sign bit. All digits are packed
BCD, such that an entire string fits in 96 bits (three long words). As is the case with all data
formats, when packed BCD strings are input to the MC68881, the strings are automatically
converted to extended precision real values. This allows packed BCD numbers to be used
as inputs to any operation. For example:

FADD.P #-6.023E+24,FP5

BCD numbers can be output from the MC68881 in a format readily used for printing by a
program generated by a high-level language compiler. For example:

FMOVE.P FP3,BUFFER{#-5}

instructs the MC68881 to convert the floating-point data register 3 (FP3) contents into a
packed BCD string with five digits to the right of the decimal point (FORTRAN F format).

1.3.4 Data Format Summary

All data formats described above are supported orthogonally by all arithmetic and trans-
cendental operations, and by all appropriate MC68020 addressing modes. For example, all
of the following are legal instructions:

FADD.B #0,FPO

FADD.W D2,FP3

FADD.L BIGINT,FP7

FADD.S #3.14159,FP5

FADD.D (SP)+,FP6

FADD.X [(TEMP_PTR,A7)],FP3

FADD.P #1.23E25,FPO

Most on-chip calculations are performed to extended precision format, and the eight floating-
point data registers always contain extended precision values. All data used in an operation
is converted to extended precision by the MC68881 before the specific operation is
performed, and all results are in extended precision. This ensures maximum accuracy
without sacrificing performance.

Refer to Figure 1-9 for a summary of the memory formats for the

supported by the MC68881.

7 0
8BITS
15 0
16 BITS
31 0
32BITS
30 22 0
8-BIT 23-BIT
EXP.| FRACTION
SIGN OF FRACTION
62 51 0
11-BIT 52-BIT
EXP. FRACTION
— SIGN OF FRACTION
94 80 63 0
15-BIT 64-BIT
EXPONENT MANTISSA
L sicNOFMANTISSA L=IMPLICIT BINARY POINT
91 80 67 0
N 3-DIGIT 17-DIGIT
N ExP. MANTISSA

— IMPLICIT DECIMAL POINT

- 2 BITS, USED ONLY FOR INFINITY OR NANS, ZERO OTHERWISE

SIGN OF EXPONENT
SIGN OF MANTISSA
coo A 70

* UNLESS A BINARY:

Figure 1-9. MC68881 Data Format Summary

DECIMAL CONVERSION OVERFLOW OCCURS

1-12

seven data formats

BYTE INTEGER

WORD INTEGER

LONG INTEGER

SINGLE REAL

DOUBLE REAL

EXTENDED REAL

PACKED DECIMAL REAL

1.4 INSTRUCTION SET

The MC68881 instruction set is organized into six major classes:

Moves between the MC68881 and memory or the MC68020 (in and out),
Move multiple registers (in and out),

Monadic operations,

Dyadic operations,

Branch, set, or trap conditionally, and

Miscellaneous.

R o

1.4.1 Moves

On all moves from memory (or from an MC68020 data register) to the MC68881, data is
converted from the source data format to the internal extended precision format.

On all moves from the MC68881 to memory (or to an MC68020 data register), data is
converted from the internal extended precision format to the destination data format.

Note that data movement instructions perform arithmetic operations, since the result is
always rounded to the precision selected in the FPCR mode control byte. The result is
rounded using the selected rounding mode, and is checked for overflow and underflow.

The syntax for the move is:

FMOVE.<fmt> <ea>,FPn Move to MC68881

FMOVE.<fmt> FPm,<ea> Move from MC68881

FMOVE.X FPm,FPn Move within MC68881
where:

<ea> is an MC68020 effective address operand and .<fmt> is the data format size. FPm
and FPn are floating-point data registers.

1.4.2 Move Multiples

The floating-point move multiple instructions on the MC68881 are much like the integer
counterparts on the M68000 Family processors. Any set of the floating-point registers FPO
through FP7 can be moved to or from memory with one instruction. These registers are
always moved as 96-bit extended data with no conversion (hence no possibility of
conversion errors). Some move examples are as follows:

FMOVEM <ea>,FP0O-FP3/FP7

FMOVEM FP2/FP4/FP6,<ea>

Move multiples are useful during context switches and interrupts to save or restore the state
of a program. These moves are also useful at the start and end of a procedure to save and
restore the calling routine's register set . In order to reduce procedure call overhead, the list
of registers to be saved or restored can be contained in a data register. This allows run-time
optimization by allowing a called routine to save as few registers as possible. Note that no
rounding or overflow/underflow checking is performed by these operations.

1-13

1.4.3 Monadic Operations

Monadic operations have one operand. This operand may be in a floating-point data
register, memory, or in an MC68020 data register. The result is always stored in a floating-
point data register. For example, the syntax for square root is:

FSQRT.<fmt> <ea>,FPn or,

FSQRT.X FPm,FPn or,
FSQRT.X FPn

The MC68881 monadic operations available are as follows:
FABS Absolute Value FLOG2 Log Base 2
FACOS Arc Cosine FLOGN Log Base e
FASIN Arc Sine FLOGNP1 Log Base e of (x+1)
FATAN Arc Tangent FNEG Negate
FATANH Hyperbolic Arc Tangent FSIN Sine
FCOS Cosine FSINCOS Simultaneous Sine and Cosine
FCOSH Hyperbolic Cosine FSINH Hyperbolic Sine
FETOX e to the x Power FSQRT Square Root
FETOXM1 e to the x Power — 1 FTAN Tangent
FGETEXP Get Exponent FTANH Hyperbolic Tangent
FGETMAN Get Mantissa FTENTOX 10 to the x Power
FINT Integer Part FTST Test
FINTRZ Integer Part (Truncated) FTWOTOX 2 to the x Power

FLOG10 Log Base 10

1.4.4 Dyadic Operations

Dyadic operations have two input operands. The first input operand comes from a floating-
point data register, memory, or an MC68020 data register. The second input operand comes
from a floating-point data register. The destination is the same floating-point data register
used for the second input. For example, the syntax for add is:

FADD.<fmt> <ea>,FPn or,

FADD.X FPm,FPn

The MC68881 dyadic operations available are as follows:
FADD Add FREM IEEE Remainder
FCMP Compare FSCALE Scale Exponent
FDIV Divide FSGLDIV Single Precision Divide
FMOD Modulo Remainder FSGLMUL Single Precision Multiply
FMUL Multiply FSUB Subtract

1.4.5 Branch, Set, and Trap-On Condition

The floating-point branch, set, and trap on condition instructions implemented by the
MC68881 are similar to the equivalent integer instructions of the M68000 Family processors,
except that more conditions exist due to the special values in IEEE floating-point arithmetic.
When a conditional instruction is executed, the MC88881 performs the necessary condition
checking and tells the MC68020 whether the condition is true or false; the MC68020 then
takes the appropriate action. Since the MC68881 and MC68020 are closely coupled, the
floating-point branch operations executed by the pair are very fast.

The MC68881 conditional operations are:

FBcc Branch

FDBcc Decrement and Branch

FScc Set According to Condition

FTRAPcc Trap-on Condition (with an Optional Parameter)
where:

cc is one of the 32 floating-point conditional test specifiers as given in 3.3 Conditional
Test Definitions.

1.4.6 Miscellaneous Instructions

Miscellaneous instructions include moves to and from the status, control, and instruction
address registers. Also included are the virtual memory/machine FSAVE and FRESTORE
instructions that save and restore the internal state of the MC68881.

FMOVE <ea>,FPcr Move to Control Register(s)
FMOVE FPcr,<ea> Move from Control Register(s)
FSAVE <ea> Virtual Machine State Save
FRESTORE <ea> Virtual Machine State Restore

1.5 ADDRESSING MODES

The MC68881 does not perform address calculations. This satisfies the criterion that an
M68000 Family coprocessor must not depend on certain features or capabilities that may or
may not be implemented by a given main processor. Thus, if the MC68881 instructs the
MC68020 to transfer an operand via the coprocessor interface, the MC68020 will perform
the addressing mode calculations requested in the instruction. In this case, the instruction is
encoded specifically for the MC68020, and the execution of the MC68881 is not dependent
on that encoding, but only on the value of the command word written to the MC68881 by the
main processor.

This interface is quite flexible and allows any addressing mode to be used with floating-point
instructions. For the M&8000 Family, these addressing modes inciude immediate,
postincrement, predecrement, data or address register direct, and the indexed/indirect
addressing modes of the MC68020. Some addressing modes are restricted for some
instructions in keeping with the M68000 Family architectural definitions (e.g., PC relative

addressing is not allowed for a destination operand).

1-15

The orthogonal instruction set of the MC68881, along with the flexible branches and
addressing modes, allows a programmer writing assembly language code, or a compiler
writer generating object or source code for the MC68020/MC68881 device pair, to think of
the MC68881 as though the MC68881 is part of the MC68020. There are no special
restrictions imposed by the coprocessor interface, and floating-point arithmetic is coded
exactly like integer arithmetic.

SECTION 2
PROGRAMMING MODEL

This section describes the registers contained in the MC68881 programming model and the
seven data formats supported by the instruction set. The notation used to refer to the
registers conforms to the Motorola assembler syntax. Furthermore, the memory data format
descriptions assume that the main processor is a member of the M68000 Family.

2.1 PROGRAMMIMG MODEL

Figure 2-1 shows a pictorial representation of the registers in the MC68881 programming
model. The following paragraphs describe each group of registers.

79 63 0

FPO
FP1
FP2

FP3 Floating Point
FP4 Data Registers

FPS
FP6
FP7
31 23 15 7 0
0 F’;ﬁ::”l Chode | FFCR Control Register

(Condi(ionl QumiSJExscspﬁon Accrued l FPSR Status Register

Code tatus Exception

I —I FPIAR Instructior} Address
Register

Figure 2-1. MC68881 Programming Model

2-1

2.1.1 Floating-Point Data Registers

The eight 80-bit floating-point data registers (FP0O-FP7) are analogous to the integer data
registers (D0-D7) of all M68000 Family processors. Floating-point data registers always
contain extended precision numbers. The data format used is identical to the extended
precision data format described in Table 2-3, except that the reserved (unused) 16 bits are
deleted. All external operands, regardless of the data format, are converted to extended
precision values before any calculation or storage into a floating-point data register is
performed.

A reset function or a null state size restore operation sets FP0-FP7 to positive non-signaling
not-a-numbers (NANSs).

2.1.2 Floating-Point Control Register

The 32-bit floating-point control register (FPCR) contains an exception enable byte, which
enables/disables traps for each class of floating-point exceptions, and a mode byte which
sets the user selectable modes.

The control register can be read or written to by the user. Bits 16 through 31 are reserved for
future definition by Motorola, will always read as zero, and are ignored during write
operations (but should be zero for future compatibility). This register is cleared by the reset
function or a null state size restore operation When cleared, this register provides the IEEE
standard defaults.

2.1.2.1 FPCR EXCEPTION ENABLE BYTE. The exception enable byte (see Figure
2-2) contains one bit for each floating-point exception class. The user may separately
enable traps for each class of floating-point exceptions.

15 14 13 12 11 10 9 8
| Bsun | snan Joperr| ovrL [unrL [Dz | Nexa [inexi |

INEXACT DECIMAL INPUT
INEXACT OPERATION
DIVIDE BY ZERO
UNDERFLOW

OVERFLOW

OPERAND ERROR
SIGNALLING NOT A NUMBER

BRANCH/SET ON UNORDERED

Figure 2-2. MC68881 FPCR Exception Enable Byte

2-2

If a bit in the status register exception byte is set by the MC68881 and the corresponding bit
in the control register ENABLE byte is also set, an exception will be taken to a specific vector
address corresponding to the exception. A user write of the control register ENABLE byte
which enables a class of floating-point exceptions will not cause a trap to be taken due to
previously generated floating-point exceptions, regardless of the value in the status register
exception byte.

The eight floating-point exception classes shown in Figure 2-2 are described in greater
detail in 4.1.1 Instruction Exceptions. Note that the bits in the FPSR exception byte and
the FPCR enable byte are in the same positions within each byte.

Dual and triple exceptions can be generated by a single instruction execution in a few cases.
When multiple exceptions occur with traps enabled for more than one exception class, the
highest priority exception will be taken; the lower priority exceptions will never be reported or
taken. It is the responsibility of the exception handler routine to check for multiple exceptions.
The bits of the ENABLE byte are organized in decreasing priority, left to right, i.e., BSUN is
the highest priority and INEX1 is the lowest priority. The only multiple exception possibilities
are:

SNAN and INEX1

OPERR and INEX2

OPERR and INEX1

OVFL and INEX2 and/or INEX1

UNFL and INEX2 and/or INEX1

2.1.2.2 FPCR MODE CONTROL BYTE. The MODE byte (see Figure 2-3) controls user
selectable rounding modes and rounding precisions. A zero in this byte selects the IEEE
defaults.

l ROUNDING MODE:
00 TONEAREST
01 TOWARD ZERO
10 TOWARD MINUS INFINITY
11 TOWARD PLUS INFINITY

ROUNDING PRECISION:
00 EXTENDED
01 SINGLE
10 DOUBLE
11 (UNDEFINED, RESERVED)

Figure 2-3. MC68881 FPCR Mode Control Byte

The rounding mode is used to determine how inexact results should be rounded. Round to
the nearest specifies that the nearest number to the infinitely precise result should be
selected as the rounded value. In case of a tie, the even result is selected. Round toward
zero chops the result. Round toward plus infinity always rounds numbers towards plus
infinity. Round toward minus infinity always rounds numbers towards minus infinity. See
4.1.2.7 INEXACT RESULT for a detailed description of the rounding algorithm that is
used.

The rounding precision selects where the rounding will occur in the mantissa. For extended
precision, the result is rounded to a 64-bit boundary. A single precision result is rounded to a
24-bit boundary, and a double precision result is rounded to a 53-bit boundary.

Note that the rounding precisions of single and double are provided for emulation of
machines that only support those precisions. When the MC68881 performs any operation,
the calculation is carried out using extended precision inputs and an intermediate result
calculated as if to produce infinite precision. After the calculation is complete, this
intermediate result is rounded to the selected precision and stored in the destination.

If the destination is a floating-point data register, the stored value will be in the extended
precision format rounded to the precision specified by the PREC bits This means that all
mantissa bits beyond the selected precision are zero after the rounding operation. Also, the
exponent value will be in the correct range for the single or double precision format,
although it is stored in extended precision format.

If the destination is a memory location, the PREC bits are ignored. In this case, a number in
the extended precision format is taken from the source floating-point data register, rounded
to the destination format precision, and written to memory.

Since the single and double precision rounding modes are considered to be emulation
modes, the execution speed of all instructions is degraded significantly when these modes
are used. However, by using these modes, the result obtained by the MC68881 will be the
same as any other machine that conforms to the IEEE standard but does not support
extended precision calculations. Note that the result obtained by performing a series of
operations with the rounding mode set to single or double precision may not be the same as
the result of performing the same operations in the extended precision mode and then
storing the final result in the single or double precision format.

2.1.3 Floating-Point Status Register

The floating-point status register (FPSR) contains a floating-point condition code byte, a
floating-point exception status byte, quotient bits, and a floating-point accrued exception
byte. All bits in the FPSR can be read or written to by the user. Execution of most floating-
point instructions will modify parts of this register.

This register is cleared by the reset function or a null state size restore operation.

2-4

2.1.3.1 FPSR FLOATING-POINT CONDITION CODE BYTE. The floating-point
condition code (FPCC) byte (see Figure 2-4) contains four condition code bits which are set
at the end of all arithmetic instructions involving the floating-point data registers, except for
the FMOVE FPm, <ea>, move multiple floating-point data register and move system control
register instructions

31 30 29 28

| 0 I2N7I2;I2I57N2:N]

NOT ANUMBER OR UNORDERED
INFINITY

ZERO

NEGATIVE

Figure 2-4. MC68881 FPSR Condition Code Byte

The operation result data type determines how the four condition code bits are set. Table 2-1
lists the condition code bit settings for each result data type. Note that of the 16 possible
combinations of the condition code bits, the MC68881 generates only eight combinations.
This is due to the mutually exclusive nature of the data types described by the condition
code bits. Loading the FPCC byte with one of the other condition code bit combinations and
performing a conditional instruction may produce an unexpected branch condition.

Table 2-1. Condition Code vs Result Data Type

N ¥4 I NAN Result Data Type

0 0 0 0 + Normalized or Denormalized
1 0 0 0 — Normalized or Denormalized
0 1 0 0 +0

1 1 0 0 -0

0 0 1 0 + Infinity

1 0 1 0 — Infinity

0 0 0 1 + NAN

1 0 0 1 —NAN

The IEEE standard defines the following four conditions, and only requires the generation of
the condition codes as a result of a floating-point compare operation. In addition to this
requirement, the MC68881 can test these conditions at the end of any operation that affects
the condition codes.

EQ Equal To

GT Greater Than

LT Less Than

UN Unordered

2-5

An unordered condition occurs when one or both of the operands in a floating-point
compare operation is a NAN. For purposes of the floating-point conditional branch, set byte
on condition, decrement and branch on condition, and trap on condition instructions, the
MC68881 logically combines the four condition codes to form the IEEE conditions based on
the following equations:

EQ = Z
GT = NANANAZ
LT = NANANAZ
UN = NAN

where:

"A" = logical AND

Note that the setting of the MC68881 condition codes is independent of the operation
executed; the condition codes simply indicate the data type of the result generated. The
IEEE defined conditions can always be derived from the data type of the result. This is
slightly different from other M68000 data types, where the setting of the integer condition
codes is dependent upon the operation executed as well as the result.

The MC68881 implements in hardware the four floating-point condition code bits described
above instead of the four IEEE defined conditions, to aid programmers of floating-point
subroutine libraries (the IEEE conditions are derived by an instruction when needed). For
example, the programmer of a complex arithmetic multiply subroutine will prefer to handle
"special" data types, such as zeros, infinities, or NANs, separately from "normal" data types.
The MC68881 condition codes allow such users to efficiently detect and handle these
"special" values.

2.1.3.2 FPSR QUOTIENT BYTE. The quotient byte (see Figure 2-5) is set at the
completion of the modulo (FMOD) or IEEE remainder (FREM) instructions. This byte contains
the seven least significant bits of the quotient (unsigned) and the sign of the entire quotient.

23 2 21 20 19 18 17 16
[s | QUOTIENT |
SEVEN LEAST SIGNIFICANT
BITS OF QUOTIENT
SIGN OF QUOTIENT

Figure 2-5. MC68881 FPSR Quotient Byte

The quotient bits can be used in argument reduction for transcendentals and other functions.
For example, seven bits are more than enough to determine in which quadrant of a circle an
operand resides. The quotient bits remain set until they are cleared by the user, or until
another FMOD or FREM instruction is executed.

2-6

2.1.3.3 FPSR EXCEPTION STATUS BYTE. The exception status (EXC) byte (see
Figure 2-6) contains a bit for each floating-point exception which may have occurred during
the last arithmetic instruction or move operation.

5 14 18 12 1 10 9 8
| Bsun | snan |operr| ovrL | unrL | bz | INEx2 | INEX1 |

[——- INEXACT DECIMAL INPUT
INEXACT OPERATION
DIVIDE BY ZERO
UNDERFLOW

OVERFLOW

OPERAND ERROR
SIGNALLING NOT A NUMBER

BRANCH/SET ON UNORDERED

Figure 2-6. MC68881 FPSR Exception Status Byte

This byte is cleared by the MC68881 at the start of most operations; operations which cannot
generate any floating-point exceptions (the FMOVEM and FMOVE control register
instructions) do not clear this byte. This byte can be used by an exception handler to
determine which floating-point exception(s) caused a trap.

If a bit is set by the MC68881 in the EXC byte and the corresponding bit in the ENABLE byte
is also set, an exception will be signaled to the main processor. When a floating-point
exception is detected by the MC68881, the corresponding bit in the EXC byte will be set,
even if the trap for that exception class is disabled. (A user write operation to the status
register, which sets a bit in the EXC byte, will not cause a trap to be taken regardless of the
value in the ENABLE byte.)

Note that the bits in the status EXC byte and control ENABLE byte are in the same bit
positions within each byte. The eight floating-point exception classes are described in
greater detail in 4.1.1 Exception Vectors.

2.1.3.4 FPSR ACCRUED EXCEPTION BYTE. The accrued exception (AEXC) byte
(see Figure 2-7) contains the five exception bits required by the IEEE standard for trap
disabled operation. These exceptions are logical combinations of the bits in the EXC byte.
The AEXC byte contains the history of all floating-point exceptions which have occurred
since the user last cleared the AEXC byte. In normal operations, only the user will clear this
byte by writing to the status register. The AEXC byte is cleared by the MC68881 only by a
reset or a null state size restore operation.

7 6 5 4 3 2 1 0
[1op [ovrL Junr | oz | mex | 0 |

INEXACT

DIVIDE BY ZERO
UNDERFLOW
OVERFLOW

INVALID OPERATION

Figure 2-7. MC68881 FPSR Accrued Exception Byte

Many users will elect to disable traps for all or part of the floating-point exception classes. To
allow these users to avoid polling the EXC byte after each floating-point instruction, the
AEXC byte is provided. At the end of most operations (all but the FMOVEM and FMOVE
control register instructions), the bits in the EXC byte are logically combined to form an
AEXC value which is logically ORed into the existing AEXC byte. This creates "sticky"
floating-point exception bits in the AEXC byte which the user need poll only once (at the end
of a series of floating-point operations, for example).

The setting or clearing of bits in the AEXC byte has no effect on whether or not the MC68881
will take an exception. The relationship between the bits in the EXC byte and the bits in the
AEXC byte is given below. At the end of each operation that can affect the AEXC byte, the
following equations are used to generate the new AEXC bits.

AEXC(IOP) = AEXC(IOP) v EXC(BSUN v SNAN v OPERR)

AEXC(OVFL) = AEXC(OVFL) v EXC(OVFL)

AEXC(UNFL) = AEXC(UNFL) v EXC(UNFL A INEX2)

AEXC(DZ) = AEXC(DZ) v EXC(DZ)

AEXC(INEX) = AEXC(INEX) v EXC(INEX1 v INEX2 v OVFL)
where:

"v" = Logical OR

"A" = Logical AND

2.1.4 Floating-Point Instruction Address Register

A majority of the MC68881 instructions operate concurrently with the MC68020, such that
the MC68020 can be executing instructions while the MC68881 is executing a floating-point
instruction. As a result of this non-sequential instruction execution, the program counter
value stacked by the MC68020 in response to an enabled floating-point exception trap may
not point to the offending instruction.

For the subset of the MC68881 instructions which can generate floating-point exception
traps, the 32-bit floating-point instruction address (FPIAR) register is loaded with the logical
address of an instruction before the instruction is executed (unless all arithmetic exceptions
are disabled). This address can then be used by a floating-point exception handler to locate
a floating-point instruction that causes an exception. Since the MC68881 FMOVE to/from the

2-8

FPCR, FPSR, or FPIAR and FMOVEM instructions cannot generate floating-point exceptions,
they do not modify the FPIAR; thus, these instructions can be used to read the FPIAR in the
trap handler without changing the previous value.

This register is cleared by the reset function or a null state size restore operation..

2.2 OPERAND DATA FORMATS AND TYPES

The following paragraphs describe the MC68881 operand data formats. Seven data formats
are supported: three signed binary integer formats, three binary floating-point formats, and
one packed binary coded decimal (BCD) floating-point format. All data formats are
supported uniformly by all arithmetic and transcendental instructions. These formats are as
follows:

Byte Integer (B)

Word Integer (W)

Long Word Integer (L)

Single Precision Real (S)

Double Precision Real (D)

Extended Precision Real (X)

Packed Decimal Real (P)

The capital letters contained in parentheses denote the suffixes added to an instruction in
the assembly language syntax to specify the data format of operands external to the
MC68881. All data formats are organized in memory consistent with the M68000 Family data
organization, i.e., the most significant byte is located at the lowest address (nearest
$00000000), with each successively less significant byte located at the next address (N + 1,
N + 2, etc.). The least significant byte is located at the highest address (nearest $FFFFFFFF).

Within the floating-point data formats, there are five types of numbers that can be
represented: normalized numbers, denormalized numbers, zeros, infinities, and not-a-
numbers (NANs). These data types are represented through special encodings of each data
format.

2.3 INTEGER DATA FORMATS

The three signed (twos complement) integer data formats supported by the MC68881 are
identical to those supported by the M68000 Family architecture (see Figure 2-8).

Since all MC68881 internal operations are performed in full extended precision, signed

integer operands are converted to extended precision values before the specified operation
is performed. Thus, mixed mode arithmetic is implicitly supported.

2-9

7 0

8 BITS{ BYTE INTEGER

15 0

16 BITS WORD INTEGER

31 0

32 BITS LONG INTEGER

Figure 2-8. Signed Integer Data Formats

2.4 FLOATING-POINT DATA FORMATS

Floating-point numbers may be encoded in three different data formats: single precision (32
bits), double precision (64 bits), and double extended precision (96 bits, 80 of which are
used). All three of these formats fully comply with the [EEE Standard for Binary Floating-
Point Arithmetic.

NOTE
The single extended precision data format defined in the IEEE standard is
redundant when the double extended precision format is included; thus, all
references in this manual which refer to extended precision imply double
extended precision as defined by the IEEE standard.

Since all MC68881 internal operations are performed in extended precision, single and
double precision operands are converted to extended precision values before the specified
operation is performed. Thus, mixed mode arithmetic is implicitly supported. The memory
formats for the real data formats are shown in Figure 2-9.

The exponent in all three binary formats is an unsigned binary integer with an implied bias
added to it. The bias values for single, double, and extended precision are 127, 1023, and
16383, respectively. When the bias is subtracted from the value of the exponent, the result
represents a signed, twos complement power of two which, when multiplied by the mantissa,
yields the magnitude of a normalized floating-point number. Note that the use of biased
exponents allows floating-point numbers in memory to be compared using the M68000
Family integer compare instruction (CMP), regardiess of the absolute magnitude of the
exponents.

2-10

30 22 0

8BIT 23-BIT
EXP.| FRACTION SINGLE REAL
SIGN OF FRACTION
62 51 0
1-BIT 52-BIT
EXP. FRACTION DOUBLE REAL
SIGN OF FRACTION
94 0
15-BIT 64-BIT
EXPONENT MANTISSA EXTENDED REAL
SIGN OF MANTISSA L= IMPLICIT BINARY POINT
o1 80 67 0
 3-DIGIT | 17-DIGIT
EXP. MANTISSA PACKED DECIMAL REAL

L IMPLICIT DECIMAL POINT

- 2 BITS, USED ONLY FOR £INFINITY OR NANS, ZERO OTHERWISE

'— SIGN OF EXPONENT

— SIGN OF MANTISSA

* UNLESS A BINARY-TO-DECIMAL CONVERSION OVERFLOW OCCURS

Figure 2-9. Memory Formats for Real Data Types

The exponent in all three binary formats is an unsigned binary integer with an implied bias
added to it. The bias values for single, double, and extended precision are 127, 1023, and
16383, respectively. When the bias is subtracted from the value of the exponent, the result
represents a signed, twos complement power of two which, when multiplied by the mantissa,
yields the magnitude of a normalized floating-point number. Note that the use of biased
exponents allows floating-point numbers in memory to be compared using the M68000
Family integer compare instruction (CMP), regardless of the absolute magnitude of the
exponents.

Data formats for single and double precision numbers differ slightly from the data format for
extended precision numbers in the representation of the mantissa. A normalized mantissa,
for all three precisions, is always in the range [1.0...2.0). The extended precision data format
explicitly represents the entire mantissa, including the explicit integer part bit. However, for
single and double precision data formats, only the fractional portion of the mantissa is
explicitly represented and the integer part is always one. Thus, the integer part bit is implicit
for single and double precision formats.

The IEEE standard has created the term "significand” to bridge this difference and to avoid
the historical implications of the term mantissa. The |IEEE standard defines a significand as
that component of a binary floating-point number which consists of an explicit or implicit
leading bit to the left of the implied binary point and a fraction field to the right of the implied
binary point.

This manual uses the terms mantissa and significand interchangeably, given the relation-
ships as shown below.

Single Precision Mantissa Single Precision Significand
1.<23-Bit Fraction Field>
Double Precision Significand
1.<52-Bit Fraction Field>
Extended Precision Significand
1.Fraction
<64-Bit Mantissa Field>

Double Precision Mantissa

Extended Precision Mantissa

L | R | A | I

NOTE

Throughout this manual, ranges are specified using traditional set notation,
with the format "bound...bound" specifing the boundaries of the range. The
type of brackets enclosing the range defines whether the endpoint is inclusive
or exclusive. A square bracket indicates inclusive while a parenthesis
indicates exclusive. For example, the range specification "[1.0...2.0]" defines
the range of numbers greater than or equal to 1.0 and less than or equal to
2.0. The range specification "(0.0...+inf]" defines the range of numbers greater
than 0.0 and less than or equal to positive infinity.

Each of the three floating-point data formats can represent five unique floating-point data
types:

Normalized Numbers

Denormalized Numbers

Zeros

Infinities

Not-A-Numbers (NANSs)

The normalized data type never uses the maximum or minimum exponent value for a given
format (except for the extended precision format,as noted below). These exponent values in
each precision are reserved for representing the special data types: zeros, infinities,
denormalized numbers, and NANs. Details of the formats for each type of number for each
precision is given in 2.8 DATA FORMAT DETAILS. The following paragraphs provide a
summary of each type.

NOTE
There is a subtle difference between the definition of an extended precision
number with an exponent equal to zero and a single or double precision
number with an exponent equal to zero. If the exponent of a single or double
precision number is zero, then the number is defined to be denormalized, and
the implied integer bit is also a zero. However, an extended precision number

with an exponent of zero may have an explicit integer bit equal to one, which
results in a normalized number (even though the exponent is equal to the
minimum value).

For simplicity, the following discussion treats all three real formats in the same
manner, where an exponent value of zero identifies a denormalized number.
However, it should be kept in mind that the extended precision format may
deviate from this rule.

2.4.1 Normalized Numbers

Normalized numbers encompass all representable real values between the overflow and
underflow thresholds, i.e., those numbers whose exponents lie between the maximum and
minimum values. Normalized numbers may be positive or negative. For normalized
numbers, the implied integer part bit in single and double precision is a one (1). In extended
precision, the integer bit is explicitly a one (1). See Figure 2-10.

MIN < EXP.< MAX MANTISSA = ANY BIT PATTERN

L— siGN OF MANTISSA, 0 OR 1

Figure 2-10. Format of Normalized Numbers

2.4.2 Denormalized Numbers

Denormalized numbers represent real values near the underflow threshold (underflow is
detected for a given data format and operation when the result exponent is less than or
equal to the minimum exponent value). Denormalized numbers may be positive or negative.
For denormalized numbers, the implied integer part bit in single and double precision is a
zero (0). In extended precision, the integer bit is explicity a zero (0). See Figure 2-11.

MANTISSA = ANY NON-ZERO BIT
EXPONENT =0 PATTERN

L SIGN OF MANTISSA, 0 OR 1

Figure 2-11. Format of Denormalized Numbers

Traditionally, floating-point number systems perform a "flush-to-zero" when underflow is
detected. This leaves a large gap in the number line between the smallest magnitude
normalized number and zero. The IEEE standard implements gradual underflow, where the

2-13

result mantissa is shifted right (denormalized) while incrementing the result exponent until
the result exponent reaches the minimum value. If all mantissa bits of the result are shifted
off to the right during this denormalization, then the result becomes zero. In many instances,
gradual underflow reduces the potential underflow damage to no more than a round-off error
(this underflow and denormalization description ignores the effects of rounding and the user
selectable rounding modes). Thus, the large gap in the number line created by "flush-to-
zero" floating-point number systems is filled with representable (denormalized) numbers in
the IEEE "gradual underflow" floating-point number system.

NOTE

Since the extended precision data format has an explicit integer part bit, a
number can be formatted with a non-zero exponent (that is not equal to the
maximum value), and a zero integer bit, which is not defined by the |IEEE
standard. Such a number is called an unnormalized number. The MC68881
never generates an unnormalized number as the result of any operation, and
unnormalized inputs are always converted to normalized or denormalized
numbers or zero before being used. Thus, as required by the |IEEE standard,
the MC68881 does not distinguish between redundant encodings of extended
precision values.

2.4.3 Zeros

Zeros are signed (positive or negative) and represent the real values +0.0 and —0.0. See
Figure 2-12.

EXPONENT =0 MANTISSA =0

SIGN OF MANTISSA, 0 OR 1

Figure 2-12. Format of Zero

2.4.4 Infinities

Infinities are signed (positive or negative) and represent real values which exceed the
overflow threshold. Overflow is detected for a given data format and operation when the
result exponent is greater than or equal to the maximum exponent value (this overflow
description ignores the effects of rounding and the user selectable rounding modes). See
Figure 2-13. For extended precision infinites, the most significant bit of the mantissa (the
integer bit) is a don't care.

EXPONENT =
MAXIMUM

L SIGN OF MANTISSA, 0 OR 1

MANTISSA =0

Figure 2-13. Format of Infinity

2.4.5 Not-A-Number

When created by the MC68881, not-a-numbers (NANs), represent the results of operations
which have no mathematical interpretation, such as infinity divided by infinity. All operations
involving a NAN operand as an input will return a NAN result. When created by the user,
NANs can protect against un-initialized variables and arrays, or represent user-defined
special number types. See Figure 2-14. For extended precision NANs, the most significant
bit of the mantissa (the integer bit) is a don't care.

EXPONENT = MANTISSA = ANY NON-ZERO BIT
MAXIMUM PATTERN

L—sieNnoF MANTISSA, 0 OR 1

Figure 2-14. Format of Not-A-Numbers

Two different types of NANs, differentiated by the most significant bit (MSB) of the fraction
(the MSB of the mantissa for single and double precision, the MSB minus one of the
mantissa for extended precision) are implemented. NANs with a leading fraction bit equal to
one are non-signaling NANs; NANs with a leading fraction bit equal to zero are signaling
NANs (SNANs). SNANs can be used as escape mechanisms for user defined non-IEEE
data types. The MC68881 never creates a SNAN as a result of an operation.

The IEEE specification defines the manner in which NANs are handled when used as inputs
to an operation. Particularly, if a SNAN is used as an input and the SNAN trap is not
enabled, it is required that a non-signaling NAN be returned as the result. The MC68881
does this by using the source SNAN, setting the most significant bit of the fraction, and
storing the resultant non-signaling NAN in the destination. Due to the IEEE formats for NANs,
the result of setting the most significant fraction bit of a SNAN will always produce a non-
signaling NAN.

When NANs are created by the MC68881, the NANs always contain the same bit pattern in

the mantissa; for any precision, all bits of the mantissa are ones. When created by the user,
any non-zero bit pattern can be stored in the mantissa.

2-15

2.4.6 Data Type Summary

Figure 2-15 presents a summary, for quick reference, of the five floating-point data types for
the single, double and extended precision formats.

MIN < EXP.< MAX MANTISSA = ANY BIT PATTERN

L— SIGN OF MANTISSA, 0 OR 1

FORMAT OF NORMALIZED NUMBERS

MANTISSA = ANY NON-ZERO BIT
EXPONENT =0 PATTERN

SIGN OF MANTISSA, 0 OR 1

FORMAT OF DENORMALIZED NUMBERS

EXPONENT =0 MANTISSA =0

SIGN OF MANTISSA, 0 OR 1

FORMAT OF ZERO

EXPONENT = -
MAXIMUM MANTISSA =0

SIGN OF MANTISSA, 0 OR 1

FORMAT OF INFINITY

EXPONENT = MANTISSA = ANY NON-ZERO BIT
MAXIMUM PATTERN"

L— siGNoF MANTISSA, 0 OR 1

FORMAT OF NOT-A-NUMBERS

*For the extended precision format, the most significant bit of the mantissa
(the integer bit) is a don't care.

Figure 2-15. Floating-Point Data Type Summary

2.5 PACKED DECIMAL DATA FORMAT

The packed decimal floating-point data format consists of a twenty-four digit packed decimal
string as shown in Figure 2-17. Decimal floating-point source operands are converted to
extended precision values before the specified operation is performed. Thus, mixed mode
arithmetic is implicitly supported.

Paragraph 2.8 DATA FORMAT DETAILS shows the packed decimal representation for
the special data types of zero, infinity, and NAN and also defines all possible data patterns in
the packed decimal data format.

2.6 INTERNAL DATA FORMATS

All MC68881 internal operations are performed in extended precision. All external
operands, regardless of the data format, are converted to extended precision values before
the specified operation is performed.

The format used in the eight floating-point data registers is identical to the extended
precision data format described previously and in 2.8 DATA FORMAT DETAILS (with the
deletion of the 16 unused bits). The extended precision data format has a 15-bit biased
integer exponent and a 64-bit mantissa.

The format of an intermediate result is shown in Figure 2-16. The intermediate result
exponent for some dyadic operations (multiply and divide) can easily overflow or underflow
the 15-bit exponent. In order to simplify overflow and underflow detection, intermediate
results in the MC68881 maintain a 17-bit twos complement integer exponent. Subsequent
detection of an overflow or underflow intermediate result always converts the intermediate
17-bit exponent back into a 15-bit biased exponent before storing into a floating-point data
register. Additionally, mantissas are maintained internally as 67 bits for rounding purposes,
but are always rounded to 64 bits (or less, depending on the selected rounding precision)
before storing into a floating-point data register.

17.8IT 63-BIT
EXPONENT FRACTION
t INTEGER BIT LEAST SIGNIFICANT BIT OF FRACTION —
OVERFLOW BIT GUARD BIT —
ROUND BIT —
STICKY BIT ——

Figure 2-16. Intermediate Result Format

2.7 FORMAT CONVERSIONS

Conversions between two data formats are accomplished in two steps:

1. Convert an operand in any memory data format to the extended precision data format
and store it into a floating-point data register, or use it as the source operand for an
arithmetic operation.

2. Convert the extended precision value in a floating-point data register to any data
format and store it in a memory destination.

2.7.1 Conversion to Extended Precision Data Format

Since the internal data format used by the MC68881 is always extended precision, all
external operands, regardless of the data format, are converted to extended precision values
before the specified operation is performed. If the external operand, regardless of the data
format, is a denormalized number, the number will be normalized before the specified
operation is performed. Conversion and normalization applies not only to loading a floating-
point data register, but also to external operands involved in arithmetic operations.

Since floating-point data registers always contain extended precision data format values, an
external extended precision denormalized number moved into a floating-point data register
is stored as an extended precision denormalized number. In this case, the number will first
be normalized, and then denormalized before being stored into the designated floating-point
data register. This method simplifies the handling of all other data formats and types.

If an external operand is an extended precision unnormalized number, the number will be
normalized before it is used in an arithmetic operation. If the external operand is an
extended precision unnormalized zero (i.e., with a mantissa of all zeros), the number will be
converted to an extended precision true zero before the specified operation is performed.
This normalization and conversion applies not only to external unnormalized operands
involved in arithmetic operations, but also to loading a floating-point data register. Note that
the regular use of unnormalized inputs defeats the purpose of the IEEE standard, and may
produce gross inaccuracy in the results.

2.7.2 Conversions to Other Data Formats

Conversion from the extended precision data format to any of the other six data formats
occurs when the contents of an MC68881 floating-point data register are stored to memory
or an MC68020 data register. Since no operation performed by the MC68881 can create a
unnormalized result, the result of moving a floating-point data register to an extended
precision external destination can never be an unnormalized number.

2.8 DATA FORMAT DETAILS

This section provides the format specification details for the single (S), double (D), and
extended (X) precision binary real, and packed decimal (P) real string data formats. Refer to
Tables 2-2 through 2-5 and Figure 2-17.

Table 2-2. Single Precision Binary Real Format

Memory Format:

31 30 23 22

Biased .
S Exponent Fraction

Field Size (in Bits):

s = Sign 1

e = Biased 8

f = Fraction 23

Total 32
Interpretation of Sign:

Positive Mantissa, s = 0

Negative Mantissa, s = 1
Normalized Numbers:

Bias of e +127 ($7F)

Range of e 0 < e <255 ($FF)

Range of Zero or Non-Zero

Mantissa = Significand = 1.f

Relation to Representation of Real Numbers
Denormalized Numbers:

(-1)5x 20127 y 1 f

e = Format Minimum = 0 ($00)
Bias of e +126 ($7E)
Range of Non-Zero
Mantissa = Significand = 0.f

Relation to Representation of Real Numbers
Signed Zeros:

(-1)8 x 2(-126) x 0 f

e = Format Minimum = 0 ($00)

f = Mantissa = Significand = 0.f=0.0
Signed Infinities:

e = Format Maximum = 255 ($FF)

f = Mantissa = Significand = 0f=0.0
NANs (Not-A-Number):

s= Don't Care

e = Format Maximum = 255 ($FF)

f= Non-Zero

Representation of f

Ixxxx...xxxx, Non-Signaling
.Oxxxx...xxxx, Signaling
Non-Zero Bit Pattern

XXXX...XXXX
f When Created by the MC68881 A1
Ranges (Approximate):
Maximum Positive Normalized 3.4x 1038
Minimum Positive Normalized 1.2x 10738
Minimum Positive Denormalized 1.4x 10745

2-19

Table 2-3. Double Precision Binary Real Format

Storage Format:

Field Size (in Bits):

s = Sign

e = Biased

t = Fraction

Total
Interpretation of Sign:

Positive Mantissa, s =

Negative Mantissa, s =
Normalized Numbers:

Bias of e

Range of e

Range of f

Mantissa = Significand =

Relation to Representation of Real Numbers
Denormalized Numbers:

e = Format Minimum =

Bias of e

Range of

Mantissa = Significand =

Relation to Representation of Real Numbers
Signed Zeros:

e = Format Minimum =

f = Mantissa = Significand =
Signed Infinities:

e = Format Maximum =

f = Mantissa = Significand =
NANs (Not-A-Number):

S=

e = Format Maximum =

f=

Representation of f

XXXX...XXXX
f When Created by the MC68881
Ranges (Approximate):
Maximum Positive Normalized
Minimum Positive Normalized
Minimum Positive Denormalized

63 62 52 61

.| Biased ot
O Exponent riacuoi

1

11

52

64

1

+1023 ($3FF)

0 < e <2047 ($7FF)

Zero or Non-Zero
1.f
(—1)sx 2e=1023) x 1 §

0 ($000)

+1022 ($3FE)
Non-Zero

0.f

(-1)$x 2-1022)x 0 f

0 ($00)
0£=0.0

2047 ($7FF)
0f=0.0

Don't Care

2047 ($7FF)

Non-Zero

J1xxxx...xxxx, Non-Signaling
.0xxxx...xxxx, Signaling
Non-Zero Bit Pattern
A1

18 x 10307
2.2 x 107308
4.9x 107924

Table 2-4. Extended Precision Binary Real Format

Memory Format:

Field Size (in Bits):
s = Sign
e = Biased Exponent
u = Zero, Reserved
j = Integer Part
f = Fraction
Total
Interpretation of Unused Bits:
Input
Output
Interpretation of Sign:
Positive Mantissa, s =
Negative Mantissa, x =
Normalized Numbers:
Bias of e
Range of e

J =

Range of f

j.f = Mantissa = Significand =

Relation to Representation of Real Numbers
Denormalized Numbers:

e = Format Minimum

Bias of e

] =

Range of f

j.f = Maintissa = Significand =

Relation to Representation of Real Numbers
Signed Zeros:

e = Format Minimum =

j.f = Mantissa = Significand =
Signed Infinities:

e = Format Maximum =

J =

j.f = Maintissa = Significand
NANs (Not-A-Number):

S=

J =

e = Format Maximum =

Representation of f

XXX... XXXX

f When Created by the MC68881
Ranges (Approximate):

Maximum Positive Normalized

Minimum Positive Normalized

Minimum Positive Denormalized

95 94 80 79 64 63

Biased Zero Integer Part

s Exponent . Fraction

1
15
16
1
63
96

Don't Care
All Zeros

0
1

+16383 ($3FFF)
0<e <32767 ($7FFF)
1

Zero or Non-Zero
1.f
(-1)s x 2(e-16383) jf

0 ($0000)
+16383 ($3FFF)
0

Non-Zero
0.f
(—1)8 x 2(-16383) x 0 f

0 ($0000)
0.0

32767 ($7FFF)
Don't Care
x.000...0000

Don't Care

Don't Care

32767 ($7FFF)

Non-Zero

x.1xxx...xxxx, Non-Signaling
x.0xxx...xxxx, Signaling
Non-Zero Bit Pattern
1111111111

6 x 104931

8 x 104933
9 x 1074952

2-21

— SIGN OF MANTISSA) 0 = POSITIVE, 1 = NEGATIVE IMPLICIT DECIMAL POINT

SIGN OF EXPONENT

DON'T CARES
J_— USED ONLY FOR £INFINITY OR NANS / N \
YY EXP2 EXP1 EXPO (EXP3) XXXX | XXXX MANT16

MANT15 MANT14 MANT13 MANT12 MANT11 MANT10 MANT9 MANT8

MANT7 MANT6 MANTS MANT4 MANT3 MANT2 MANT1 MANTO

MANTn
EXPn

Is the nth digit of the mantissa.

Is the nth digit of the exponent. EXP3 is generated only during a move out operation if the source
operand exponent exceeds the magnitude of a three digit exponent; otherwise, it is a don’t care.
Only EXPO-EXP2 are used for input.

XXXX Are don't care bits, which are zero on output and ignored on input.
Figure 2-17. Packed Decimal Floating-Point Data Format
Table 2-5. Decimal String Type Definitions
Word 5 Word 4

15 [14 [13 [12 11...0 15...0 Words 3-0

Operand -
Type 3-Digit 1-Digit 16-Digit

SM [SE | ¥ y Exponent Integer Fraction
INFINITY 0/ 1 1 1 $FFF $xxxx $00...00
+NAN 0/1 1 1 1 $FFF $XXXX Non-Zero, see Note 1
+SNAN (V73] 1 1 1 $FFF $XXXX Non-Zero, see Note 1
+ZERO 0 0/1 X X $000-$999 $xxx0 $00...00
-ZERO 1 0/1 X X $000-$999 $xxx0 $00...00
+In-Range 0 0/1 X X $000-$999 $xxx0-$xxx9 $00...01-$99...$99
—In-Range 1 0/1 X X $000-$999 $xxx0-$xxx9 $00...01-$99...$99

NOTES:

1. A decimal string with the SE and y bits set, an exponent of $FFF, and a non-zero 16-digit decimal

fraction is a NAN. On input, the fraction part of the NAN is moved bit-for-bit into the extended
precision mantissa of a floating-point register. The exponent of the register is set to signify a NAN,
but no decimal-to-binary conversion nor any other conversion is performed. Therefore, the most
significant bit of the most significant digit in the decimal fraction (most significant bit of MANT15) is a
don't care (as in extended NANs) and the most significant bit minus one of MANT15 is the signaling
NAN (SNAN) bit. If it is a zero, then the NAN is a SNAN.

It a non-decimal digit [$A...$F] appears in the exponent of a zero, the number will be converted to a
true zero. Hardware will not detect if non-decimal digits [$A...$F] appear in the exponent, integer, or
fraction digits of an in-range decimal string. These non-decimal digits are converted to binary in the
same manner as decimal digits. This will produce a result that will probably be useless, although it is
repeatable.

. Since in-range numbers can not overflow or underflow on conversion to extended precision,

normalized extended precision numbers will always be produced by conversion from decimal.

2-22

SECTION 3
INSTRUCTION SET

This section details the MC68881 instruction set using the Motorola assembly language
syntax and notation. First, a summary of the instruction set is given as an introduction (and
can be used for quick reference), followed by a detailed description of each instruction. Also
included at the end of this section is a listing of the binary patterns of all of the instructions,
and an opcode map summary for use by assembler and compiler writers

3.1 INSTRUCTION SET SUMMARY

The following paragraphs give a brief description of each instruction group, along with tables
showing the Motorola syntax for each instructions. The MC68881 instructions can be
separated into the following groups:

Data Movement

Dyadic Operations

Monadic Operations

Program Control

System Control

The instruction set is discussed in the following summary and detail sections using this

functional grouping and the following notation:

B, W, L The same size as all M68000 Family processors; specifies a signed integer
data type (twos complement) of byte (8 bits), word (16 bits), or long word (32

bits).

S Single precision floating-point data format (32 bits)

D Double precision floating-point data format (64 bits)

X Extended precision floating-point data format (96 bits, 16 bits unused)

P Packed BCD floating-point data format (96 bits, 12 bytes)

FPm, FPn One of the eight floating-point data registers

FPcr One of the three floating-point system control registers (FPCR, FPSR, or FPIAR)

<ea> Any valid MC68020 addressing mode

k An twos complement signed integer (-64 to +17) that specifies the format of a
number to be stored in the packed decimal format

cce An index into the MC68881 constant ROM

<list> A list of floating-point data registers or control registers

<label> A relative label used by an assembler to calculate a displacement

3.1.1 Data Movement Operations

This group of instructions provides the means to load or store the user visible configuration
of the MC68881 and to move operands into, between, or out of the floating-point data
registers. Data format conversion functions are also implicitly supported, since all external
data formats are converted to extended precision for internal storage, and vice versa.
Operations to move the system control registers into and out of the MC68881 are also
provided. The move constant ROM (FMOVECR) instruction allows floating-point data
registers to be loaded quickly with commonly used constants such as =, €, 0.0, 1.0, etc.
Table 3-1 gives a summary of the data movement instructions that are available and the
operand data formats supported.

Table 3-1. Data Movement Operations

Instruction

Operand
Syntax

Operand
Format

Operation

FMOVE

FPm,FPn
<ea>,FPn
FPm,<ea>

X
B,W,L,S,D,X,P
B,W,L,S,D,X

source — destination

FPm,<ea>{#k}
FPm,<ea>{Dn}
<ea>,FPcr
FPcr,<ea>

#cce,FPn

FMOVECR
FMOVEM

ROM constant —» FPn

<ea> <list>!
<ea>,Dn
<lists1<ea>
Dn,<ea>

>

listed registers — destination

>

source — listed registers

xrrxr|x|——7UvU

NOTE:
The register list may include any combination of the eight floating-point registers, or it may contain any
combination of the three control registers FPCR, FPSR, and FPIAR. If the register list mask resides in a
main processor data register, only floating-point data registers may be specified.

3.1.2 Dyadic Operations

The dyadic floating-point instructions provide several arithmetic functions that require two
input operands such as add, subtract, multiply, and divide. For these operations, the first
operand may be located in memory, an integer data register, or a floating-point data register,
and the second operand is always contained in a floating-point data register. The results of
the operation are stored in this register. All operations support any data format and are
performed to extended precision, with the exception of the single precision multiply and
divide (FSGLMUL and FSGLDIV), which support any precision inputs, but return results
accurate only to single precision. These two instructions provide very high speed operations

by sacrificing accuracy. The general format of the dyadic instructions is given in Table 3-2,
with a list of the available operations in Table 3-3.

Tabie 3-2. Dyadic Operation Format

Instruction Operand Operand Operation
Syntax Format
F<dop> <ea>,FPn B,W,L,S,D,X,P FPn <function> source — FPn

FPm,FPn X

NOTE: <dop> is any one of the dyadic operation specifiers.

Table 3-3. Dyadic Operations

Instruction Function
FADD add
FCMP compare
FDIV divide
FMOD modulo remainder
FMUL multiply
FREM IEEE remainder
FSCALE scale exponent
FSGLDIV single precision divide
FSGLMUL single precision multiply
FSUB subtract

3.1.3 Monadic Operations

The monadic floating-point instructions provide several arithmetic functions that require only
one input operand. Unlike the integer counterparts to these functions (e.g., NEG <ea>), a
source and a destination may be specified. The operation is performed on the source
operand, and the result is stored in the destination, which is always a floating-point data
register. When the source is not a floating-point data register, all data formats are supported;
the data format is always extended precision for register-to-register operations. The general
format of these instructions is shown in Table 3-4, with a list of the available operations
shown in Table 3-5. The form of the simultaneous sine and cosine instruction is given in
Table 3-6.

3-3

Table 3-4. Monadic Operation Format

Instruction Operand Operand Operation
Syntax Format
F<mop> <ea>,FPn B,wW,L,S,D,X,P source — function — FPn
FPm,FPn X
FPn X FPn — function » FPn

NOTE: <mop> is any one of the monadic operations specifiers.

Table 3-5. Monadic Operations

Instruction Function
FABS absolute value
FACOS arc cosine
FASIN arc sine
FATAN arc tangent
FATANH hyperbolic arc tangent
FCOS cosine
FCOSH hyperbolic cosine
FETOX eX
FETOXM1 e*—1
FGETEXP extract exponent
FGETMAN extract mantissa
FINT extract integer part
FINTRZ extract integer part, rounded-to-zero
FLOGN In(x)
FLOGNP1 In(x+1)
FLOG10 log 4 o(x)
FLOG2 log,(x)
FNEG negate
FSIN sine
FSINH hyperbolic sine
FSQRT square root
FTAN tangent
FTANH hyperbolic tangent
FTENTOX 10%
FTWOTOX 2%
Table 3-6. Dual Monadic Operation Format
Instruction Operand Operand Operation
Syntax Format
FSINCOS <ea>,FPc:FPs| B,W,L,S,D,X,P SIN(source) — FPs;
FPm,FPc:FPs | X COS(source) - FPc

3.1.4 Program Control Operations

The program control instructions provide a means of affecting program flow based on
conditions present in the floating-point status register after any operation that sets the
condition codes. In addition to allowing direct control of program flow with the branch
conditionally (FBcc) and the decrement and branch conditionally (FDBcc) instructions, the
set conditionally (FScc) instruction allows the user to set a Boolean variable based on the
floating-point condition codes as an intermediate result in the evaluation of a complex
Boolean equation. Also included is a test operand instructon (FTST) that sets the floating-
point condition codes for use by the other program and system control instructions, and a no
operation instruction (FNOP) that may be used to force synchronization of the MC68881 with
the main processor. Table 3-7 gives a summary of the program control instructions that are
available.

The MC68881 supports 32 conditional tests that are separated into two groups — 16 that will
cause an exception if an unordered condition is present when the conditional test is
attempted, and 16 that will not cause a exception if an unordered condition is present (an
unordered condition occurs when an input to an arithmetic operation is a NAN). Table 3-8
lists the 32 condition code mnemonics along with the conditional test function. Refer to
paragraph 3.3 CONDITION CODE COMPUTATION for a detailed definition of the
conditional equation used by each test.

Table 3-7. Program Control Operations

Instruction Operand Operand Operation
Syntax Size or Format

FBcc <label> WL if condition true,

then PC+d —» PC
FDBcc Dn,<label> W if condition true, then no operation;

else Dn-1 — Dn;
if Dn # —1
then PC +d —» PC

FNOP none none no operation
FScc <ea> B if condition true,

then 1's — destination
else 0's — destination

FTST <ea> B,W,L,S,D,X,P set FPSR condition codes
FPn X

3-5

Table 3-8. Conditional Test Mnemonics

Exception on Unordered No Exception on Unordered

GE greater than or equal OGE ordered greater than or equal
GL greater than or less than OGL ordered greater than or less than
GLE greater than or less than or equal OR ordered

GT greater than OGT ordered greater than

LE less than or equal OLE ordered less than or equal

LT less than OLT ordered less than

NGE not (greater than or equal) UGE unordered or greater than or equal
NGL not (greater than or less than) UEQ unordered or equal

NGLE not (greater than or less than or equal) UN unordered

NGT not greater than UGT unordered or greater than

NLE not (less than or equal) ULE unordered or less than or equal
NLT not less than ULT unordered or less than

SEQ signalling equal EQ equal

SNE signalling not equal NE not equal

SF signalling always false F always false

ST signalling always true T always true

3.1.5 System Control Operations

The system control instructions are utilized for communications with the operating system via
a conditional trap instruction (FTRAPcc), and for saving or restoring (FSAVE or FRESTORE)
the non-user visible portion of the MC68881 during context switches in a virtual memory or
other type of multitasking system. The conditional trap instruction uses the same conditional
tests as the program control instructions and allows an optional 16- or 32-bit immediate
operand to be included as part of the instruction, for passing parameters to the operating
system. Table 3-9 gives a summary of the system control instructions that are available.

Table 3-9. System Control Operations

Instruction Operand Operand Operation
Syntax Size
FRESTORE <ea> none state frame — internal registers
FSAVE <ea> none internal registers — state frame
FTRAPcc none none if condition true,
#xxx W,L then take exception

3.2 COMPUTATIONAL ACCURACY
Whenever an attempt is made to represent a real number in a binary format of finite

precision, there is a possibility that the number can not be represented exactly; this is
commonly referred to as round-off error. Furthermore, when two inexact numbers are used in

3-6

a calculation, the error present in each number is reflected, and possibly aggravated, in the
result.

One of the major reasons the IEEE Standard for Binary Floating-Point Arithmetic (P754) was
developed is to define the error bounds for calculation of binary floating-point values so that
all machines that conform to the standard produce the same results for an operation (when
using a specific rounding mode and set of input values, and producing a result of a particular
precision). This is because the IEEE standard specifies not only the format of data items, but
also defines 1) the maximum allowable error that may be introduced during a calculation
and 2) the manner in which rounding of the result is performed. However, the IEEE
specification specifies only the operation of some of the instructions supported by the
MC68881; those not specified by the IEEE standard are detailed in the following
paragraphs. The following paragraphs discuss the accuracy of the calculations performed by
the MC68881 by separating them into three groups: 1) the IEEE specified operations and
non-transcendental functions, 2) the transcendental functions, and 3) the |IEEE specified
conversions between binary and decimal real formats.

3.2.1 Arithmetic Instructions

The IEEE Specification for Binary Floating-Point Arithmetic specifies that the following
operations must be supported for each data format: add, subtract, multiply, divide, remainder,
square root, integer part, and compare. Conversions between the various data formats are
also required. In addition to these arithmetic functions, the MC68881 also supports the non-
transcendental operations of: absolute value, get exponent, get mantissa, negate, modulo
remainder, scale exponent, and test. Since the IEEE specification defines the error bounds
to which all calculations are performed, the result obtained by any conforming machine can
be predicted exactly for a partiuclar precision and rounding mode. The error bound that is
defined by the IEEE specification is one-half unit in the last place of the destination data
format in the round-to-nearest mode, and one unit in the last place in the other rounding
modes.

The MC68881 performs all calculations using a 67-bit mantissa for the intermediate results.
The three bits beyond the precision of the extended format allow the MC68881 to perform all
calculations as if to infinite precision, and then round the result to the desired precision
before storing it in the destination. By performing calculations in this manner, the final result
is always correct for the specified destination data format before rounding is performed
(unless an overflow or underflow error occurs). The specified rounding operation then
produces a number that is as close as possible to the infinitely precise intermediate value
and still is representable in the selected precision. An example of how the 67-bit mantissa
allows the MC68881 to meet the error bound of the IEEE specification is as follows:

Mantissa | g
Intermediate Result: X.X... ...x00 1
Round-to-Nearest Result: X.X... ...x00

rs
00 (Tie Case)

In this case, the least significant bit (I) of the rounded result is not incremented, even though
the guard bit (g) is set in the intermediate result, because of the way that the IEEE standard
specifies how tie cases are to be handled. Assuming that the destination data format is

3-7

extended, if the difference between the infinitely precise intermediate result and the round-
to-nearest result is calculated, the relative difference is 264 (the value of the guard bit). This
error is equal to one-half of the value of the least significant bit, and is the worst-case error
that can be introduced when using the round-to-nearest mode; thus the term one-half unit in
the last place correctly identifies the error bound for this operation. This error specification is
the relative error present in the result; the absolute error bound is equal to
2exponent y 2-64 An example of the error bound for the other rounding modes is as
follows:

Mantissa | g
Intermediate Result: X.X... ...x00 1
Round-to-Zero Result: X.X... ...x00

In this case, the difference between the infinitely precise result and the rounded result is 2-64
+ 2765 4 2-66 which is slightly less than 2 -63 (the value of the least significant bit); thus the
error bound for this operation is not more than one unit in the last place. For all of the
arithmetic operations, these error bounds are met by the MC68881, thus providing accurate
and repeatable results.

3.2.2 Transcendental Instructions

The IEEE specification does not define the error bound to which transcendental functions are
to be performed (except square root). In this context, the transcendental functions are all of
those operations not mentioned in the previous paragraphs (i.e., the trigonometric,
hyperbolic, logarithmic, and exponential instructions). Due to the highly recursive nature of
the alogrithms used to calculate these functions, the round-off error in the input operands to
a function, combined wth the limited precision of the MC68881 ALU, do not allow the
calculation of a result with the same error limit as the standard arithmetic functions. However,
these operations are quite accurate, given the constraint of using an ALU with a finite
precision of 67 bits. In general, the worst-case accuracy of any transcendental function is
one unit in the last place of double precision (which is equal to 4096 units in the last place of
extended precision). It is possible that the accuracy of the MC68881 algorithms is actually
much better than this, and at the time of this printing, an exhaustive analysis of the error
bounds for these functions is being performed. it is believed that the error bound for these
instructions is approximately 64 units in the last place of extended precision. The following
example illustrates what this error bounds specification means:

Mantissa
Correct Result: X.X... ...x00000000
MC68881 Calculated Result: X.X... ...x01000000

In this case, the relative difference between the correct result and the result calculated by the
MC68881 is 2-57 (assuming an extended precision result), which is 26 times the value of the
least significant bit. This corresponds to an error of 64 units in the last place.

Note that the transcendental functions perform limited checking for special case input values

such as boundary conditions. For example, the exponential functions check for a zero input
value, but do not check for exact integer values. Thus, raising a number to an exact integer

3-8

value may not produce an exact result (e.g., the instruction FTENTOX #1,FP0 will not
produce an extended precision value of exactly 10.0), and the INEX2 bit in the FPSR may be
set even if an exact result is produced

3.2.3 Decimal Conversions

The IEEE standard does not specify the format of the decimal real representation that is to be
used by any conforming machine, but it does define the error bounds for conversions
between decimal and the single and double precision binary formats. Thus, the result of
such conversions will always produce consistently rounded results, and those results are
predictable and repeatable on any conforming system. However, it is not always possible to
perform an exact conversion between these data formats, due to the limited precision of the
numbers and the different radices of the values. The error bounds for these conversions is
0.97 unit in the last digit of the destination precision for the round-to-nearest mode; and 1.47
units in the last digit of the destination precision for the other rounding modes. When an
input conversion cannot produce an exact result, the MC68881 sets the INEX1 bit in the
FPSR exception byte; thus allowing for special handling of these conversion errors that is
separate from the handling of other types of inaccurate results. When an output conversion
cannot produce an exact result, the INEX2 bit is set.

The packed decimal data format supported by the MC68881 allows the representation of
double precision binary numbers in a decimal form, in accordance with the IEEE
specification. When a packed decimal number is converted to extended precision, the result
is always in range, although the conversion may be inexact. This is because the magnitudes
of the exponent and mantissa of a packed decimal number are less than the largest values
representable in the extended precision format. Refer to 4.1.2.8 INEXACT RESULT ON
DECIMAL INPUT for a description of how inaccurate decimal to binary conversions are
handled.

When an extended precision number is converted to packed decimal, there is not only the
possibility that the number cannot be represented exactly, but also that it is too large to be
represented with a three-digit exponent. When this type of conversion is performed, the k
factor that is specified is used to locate the decimal rounding boundary. If the magnitude of
the rounded decimal result exponent exceeds 999, the MC68881 will signal an operand
error and calculate a fourth exponent digit, which is included in the destination operand (see
Figure 2-11 for the position of the fourth digit). Refer to 4.1.2.7 INEXACT RESULT for a
description of how inaccurate binary to decimal conversions are handled.

Note that the error bounds specified by the IEEE standard apply only to conversions of
values in the range of the double precision format. The error bounds for conversion of
extended precision values which cannot be represented in double precision will be
significantly larger. Conversion of such extended precision values to decimal must be
performed by a software envelope to generate decimal results with error bounds analogous
to those specified in the IEEE standard for double precision values. Such a software
envelope must utilize a "super” extended precision to acheive such error bounds.

3-9

Note that the binary to/from decimal conversions performed by the MC68881 utilize the on-
chip ROM values of powers of 10 for speed and accuracy, thus allowing exact conversions in
many cases (particularly for values that are exact powers of ten).

3.3 CONDITIONAL TEST DEFINITIONS

The MC68881 provides a very simple mechanism for performing conditional tests of the
result of any arithmetic floating-point operation. First, the condition code bits in the FPSR are
set or cleared at the end of any arithmetic operation, or a move to a single floating-point data
register. The condition code bits are always set consistently, based on the result of the
operation. Secondly, the MC68881 provides 32 conditional tests that are supported in
hardware by the M68000 Family coprocessor interface. This allows conditional instructions
to test floating-point conditions to be coded in exactly the same way as the integer
conditional instructions, and the evaluation of the conditional test by the MC68881 is
performed automatically. The combination of the consistent setting of the condition code bits
and the simple programming of conditional instructions gives the MC68020/MC68881
combination a very flexible, high performance method of altering program flow based on
floating-point results.

One important consideration of which programmers must be cognizant is that the inclusion of
the NAN data type in the IEEE floating-point number system means that each conditional test
must include the NAN condition code bit in the Boolean equation for that test. Because a
comparison of a NAN with anything is unordered (i.e., it is impossible to determine if a NAN
is bigger or smaller than an in-range number), the compare instruction sets the NAN
condition code bit when an unordered compare is attempted. All arithmetic instructions also
set the NAN bit if the result of an operation is a NAN. The conditional instructions interpret
the NAN condition code being set as the unordered condition

The inclusion of the unordered condition in floating-point branches destroys the familiar
trichotomy relationship (greater than, equal, less than) that exists for integers. For example,
the opposite of floating-point branch greater than (FBGT) is not floating-point branch less
than or equal (FBLE).

Rather, it is floating-point branch not greater than (FBNGT). If the result of the previous
instruction was unordered, FBNGT is true, whereas both FBGT and FBLE would be false,
since unordered fails both of these tests (and sets BSUN). Compiler programmers should be
particularly careful of the lack of trichotomy in the floating-point branches since it is common
for compilers to invert the sense of conditions.

In the following paragraphs, the conditional tests are broken into three main categories:
1) IEEE non-aware tests, 2) IEEE aware tests, and 3) miscellaneous.

The IEEE non-aware test set is best used when porting a program from a system that does
not support the IEEE standard to one that does, or when generating high-level language
code that does not support IEEE floating-point concepts (i.e., the unordered condition).
When using the IEEE non-aware test set, the user receives a BSUN exception whenever a
branch is attempted and the NAN condition code bit is set, unless the branch is an FBEQ or

an FBNE. If the BSUN trap is enabled in the FPCR register, the exception causes a trap.
Therefore, the IEEE non-aware program is interrupted if something unexpected occurs.

The |EEE aware branch set should be used by compilers and programmers who are
knowledgeable about the IEEE standard and wish to deal with ordered and unordered
conditions. Since the ordered or unordered attribute is explicitly included in the conditional
test, the BSUN bit is not set in the status register EXC byte when the unordered condition
occurs.

3.3.1 IEEE Non-Aware Tests

All of the conditional tests below, except EQ and NE, set the BSUN bit in the status register
exception byte if the NAN condition code bit is set when a conditional instruction is executed.

Mnemonic Definition Equation Predicate
EQ Equal Z 000001
NE Not Equal Z 001110
GT Greater Than NANV ZV N 010010
NGT Not Greater Than NANV ZV N 011101
GE Greater Than or Equal ZV(NANV N) 010011
NGE Not (Greater Than or Equal) NANV(NA 2) 011100
LT Less Than NANANV 2) 010100
NLT Not Less Than NANVZV N 011011
LE Less Than or Equal ZV (NA NAN) 010101
NLE Not (Less Than or Equal) NANV(NV 2) 011010
GL Greater or Less Than NAN YV Z 010110
NGL Not (Greater or Less Than) NANV Z 011001
GLE Greater, Less or Equal NAN 010111
NGLE Not (Greater, Less or Equal) NAN 011000

3-11

3.3.2 IEEE Aware Tests

The following conditional tests do not set the BSUN bit in the status register exception byte
under any circumstances.

Mnemonic Definition Equation Predicate
EQ Equal Z 000001
NE Not Equal Z 001110
OGT Ordered Greater Than NANV ZV N 000010
ULE Unordered or Less or Equal NANV ZV N 001101
OGE Ordered Greater Than or Equal ZV(NANV N) 000011
ULT Unordered or Less Than NANV(N A 2) 001100
OoLT Ordered Less Than NANNANV 2 000100
UGE Unordered or Greater or Equal NANVZV N 001011
OLE Ordered Less Than or Equal ZV (NA NAN) 000101
UGT Unordered or Greater Than NANV(NV 2 001010
OGL Ordered Greater or Less Than NAN V Z 000110
UEQ Unordered or Equal NAN V Z 001001
OR Ordered NAN 000111
UN Unordered NAN 001000

3.3.3 Miscellaneous Tests

The following tests are not generally used, but are implemented for completeness of the set.
if the NAN condition code bit is set, T and F do not set the BSUN bit while SF, ST, SEQ, and
SNE will set the BSUN bit.

Mnemonic Definition Equation Predicate
F False False 000000
T True True 001111
SF Signalling False False 010000
ST Signalling True True 011111
SEQ Signalling Equal 4 010001
SNE Signalling Not Equal Z 011110

3.4 DETAILED INSTRUCTION DESCRIPTIONS

The following paragraphs contain detailed information about each instruction in the
MC68881 instruction set. Instructions are arranged in alphabetical order by assembler
mnemonic. The following paragraphs provide background information that will aid in reading
the detailed instruction information presented.

3.4.1 MC68020/MC68881 Addressing Modes

Due to the nature of the MC68020/MC68881 coprocessor interface, the MC68881 supports
all MC68020 addressing modes. The MC68020 effective address modes are categorized by
the manner in which the modes are used. The following classifications are used in the
instruction details.

Data If an effective address is used to refer to data operands, it is considered a
data addressing mode.

Memory If an effective address is used to refer to memory operands, it is considered
a memory addressing mode.

Alterable If an effective address is used to refer to alterable (writable) operands, it is
considered an alterable addressing mode.

Control If an effective address is used to refer to memory operands that do not
have an associated size, it is considered a control addressing mode.

Table 3-10 shows the various addressing categories of each effective address mode. These
catgories may be combined so that additional, more restrictive, classifications may be
defined. For example, the instruction descriptions use such classifications as memory
alterable or data alterable. The former refers to those addressing modes which are both
memory and alterable addresses (i.e., the intersection of the two sets of modes), and the
latter refers to addressing modes which are both data and alterable.

3-13

Table 3-10. Effective Addressing Mode Categories

Assembler
Address Modes Mode|Register | Data | Memory | Control | Alterable] Syntax

Data Register Direct 000 | reg. no. X - - X Dn
Address Register Direct 001 | reg. no. - - - X An
Address Register Indirect 010 | reg. no. X X X X (An)
Address Register Indirect

with Postincrement 011 reg. no. X X - X (An)+
Address Register Indirect

with Predecrement 100 | reg. no. X X - X ~(An)
Address Register Indirect

with Displacement 101 | reg. no. X X X X (d16,An)

Address Register Indirect with
Index (8-Bit Displacement) 110 | reg. no. X X X X (d8,An,Xn)
Address Register Indirect with

Index (Base Displacement) 110 | reg. no. X X X X (bd,An,Xn)
Memory Indirect Post-Indexed | 110 | reg. no. X X X X ([bd,An},Xn,od)
Memory Indirect Pre-Indexed 110 | reg. no. X X X X ([bd,An,Xn},od)
Absolute Short 111 000 X X X X (xxx).W
Absolute Long 111 001 X X X X (xxx).L
Program Counter Indirect

with Displacement 111 010 X X X - (d16,PC)
Program Counter Indirect with

Index (8-Bit Displacement) 111 011 X X X - (d8,PC,Xn)
Program Counter Indirect with

Index (Base Displacement) 111 01 X X X - (bd,PC,Xn)
PC Memory Indirect

Post-Indexed 111 011 X X X - ([bd,PC],Xn,od
PC Memory Indirect

Pre-Indexed 111 011 X X X - ([bd,PC,Xn],od
Immediate 111 100 X X - - #<data>

3.4.2 Instruction Description Format

The details of each instruction are given in 3.4.3 Individual Instruction Descriptions.
Figure 3-1 illustrates what information is given in these instructions descriptions.

Y

Instruction Name

Cperation Description (see 3.4.3
Individual Instruction Descrip-
r

tions for notation definitions)

Syntax for this Instruction

Text Description of Instruction Opera-
tion

Result of Operation for Input Oper-
and(s) (This table defines the data type
of the result that is returned for each
combination of input operands.)

Status Register Effects

Instruction Format (This specifies the
bit pattern and fields of the operation
and command words, and any other
words that are always part of the
instruction. The effective address
extensions are not explicitly illustrated.
The extension words (if any) follow
immediately after the illustrated por-
tions of the instructions. Refer to the
MC68020 32-Bit Microprocessor
User's Manual for the format of any
required extension words.)

Meanings and Allowed Values (for the
various fields required by the instruc-
ion format.)

\

7

Operation: Absolute Value of Sou
Assembler FABS.<fmt> <ea>,|
Syntax: FABS.X FPm,F
FABS.X FPn
Attributes: Format = (Byte, Word,
Description: Convert the source op

value of that operand into the de:

Operation Table:

Destination

Result

Source

+

Abe

Notes: 1. If the source operand i

Status Register:
Condition Codes

Quotient Byte:

Exception Byte:

Affect:
Not af

BSUN
SNAN
OPER
OVFL
UNFL
374

INEX2
INEX1

Accrued Exception Byte: Affect:

Instruction Format:

15 14 13 12 11

1 1 1 4y | Cor
Source

0 lR/Ml 0 l Specifiel

Instruction Fields:

Coprocessor ID Field — Specifit
Motorola assemblers defau

Effective Address Field — Deter
If RM =0, this field is unus
If RM = 1, this field is enco

Figure 3-1. Instruction Description Format

3.4.2.1 OPERATION TABLES. An operation table is included for most instructions. This
table gives the result data type for the instruction based on types of input operand(s). For
example, Figure 3-2 illustrates the table for the FADD instruction.

Source In Range Zero Infinity
Destination + - + - + -
+
In Range Add Add +inf - inf
1
Zero + Add +0.0 0.0 + inf - inf
- 0.0 -0.0
Infinit + +inf +inf + inf NAN2
nhintty) - inf - inf NAN2 - inf

NOTES:
1. Returns +0.0 in rounding modes RN, RZ and RP; returns -0.0 in RM.
2. Sets the OPERR bit in the FPSR exception status byte.
3. |f either operand is a NAN, refer to 3.4.2.2 NANS for more information.

Figure 3-2. Operation Table Example (FADD Instruction)

In this table, the type of the source operand is shown along the top, and the type of the
destination operand is shown along the side. In-range numbers are normalized,
denormalized, or un-normalized real numbers, integers, or packed decimal numbers that are
converted to normalized or denormalized extended precision numbers upon entering the
MC68881.

From this table, it can be seen that if both the source and destination operand are positive
zero, the result is also a positive zero. For another example, if the source operand is a
positive zero and the destination operand is an in-range number, then the ADD algorithm
will be executed to obtain the result. If a label such as ADD appears in the table, it indicates
that the MC68881 will perform the indicated operation and return the correct result.

A third example of using the tables is when a source operand is plus infinity and the
destination operand is minus infinity. Since the result of such an operation is undefined, a
not-a-number (NAN) will be returned as the result and the OPERR bit will be set in the FPSR
exception byte.

3.4.2.2 NANS. In addition to the data types covered in the operation tables for each
instruction, NANs can also be used as inputs to an arithmetic operation. The operation
tables do not contain a row and column for NANs, because NANs are always handled the
same way in all operations.

3.4.2.2.1 Non-Signaling NANSs. If either operand, but not both operands, to an operation
is a NAN, and it is a non-signaling NAN, then that NAN is returned as the result. If both
operands are non-signaling NANs, then the destination operand non-signalling NAN is
returned as the result.

3.4.2.2.2 Signaling NANSs. If either operand to an operation is a signaling NAN (SNAN),
then the SNAN bit will be set in FPSR EXC byte. If the SNAN trap enable bit is set in FPCR
ENABLE byte, then the trap is taken and the destination is not modified. If the SNAN trap
enable bit is not set, then the SNAN is converted to a non-signaling NAN (by setting the
SNAN bit in the operand to a one) and the operation continues as described above for non-
signaling NANs.

3.4.2.3 OPERATION POST PROCESSING. Most floating-point operations end with an
identical post processing step. While reading the summary for each instruction, it should be
assumed that an instruction performs post processing unless it is specifically stated that it
does not do so. The following paragraphs detail post processing.

3.4.2.3.1 Setting Floating-Point Condition Codes. Unlike the integer arithmetic
condition codes found in the MC68020, which are set uniquely for each instruction, the
floating-point condition codes are either not changed at all by an instruction, or are always
set in the same way by any instruction. Therefore, it is not necessary to include details of
condition code settings for each MC68881 instruction in the detailed instruction summary to
follow. The following paragraphs explain how condition codes are set for all instructions that
modify any condition codes.

Refer to 2.1.3.1 FPSR FLOATING-POINT CONDITON CODE BYTE for a description
of the FPSR condition code byte.The four condition code bits are:

N Sign of Mantissa
4 Zero

| Infinity

NAN Not-A-Number

These condition code bits differ slightly from integer condition codes in that they are not
dependent on the type of operation being performed, but rather, can be set at the end of the
operation by examining the result. (The M68000 integer condition codes bits N and Z have
this characteristic, but the V and C bits are set differently for different instructions.) At the end
of any floating-point operation, the result is inspected and the condition code bits are set or
cleared accordingly. For example, if the result of an operation is a positive normalized
number, then all of the condition code bits are set to zero. If the result is a minus infinity, then
the N and | bits are set and the Z and NAN bits are cleared.

Refer to 2.1.3.1 FPSR FLOATING-POINT CONDITION CODE BYTE for a description
of how these bits are used to generate the four conditions required by the IEEE floating-point
standard. Refer to 3.3 CONDITIONAL TEST DEFINITIONS for a description of how the
four condition code bits are used to generate the 32 floating-point conditional tests.

3.4.2.3.2 Underflow, Round, Overflow. During calculation of an arithmetic result, the
ALU of the MC68881 has more precision and range than the 80-bit extended precision
format. However, the final result of these operations is an extended precision floating-point
value. In some cases, an internal result becomes either smaller or larger than can be
represented in extended precision. Also the operation may have generated more bits of
precision than can be represented in the chosen rounding precision. For these reasons,
every arithmetic instruction ends by rounding the result, and checking for overflow and
underflow.

At the completion of an arithmetic operation, the internal result is checked to see if it is too
small to be represented as a normalized number in the selected precision. If so, the
underflow (UNFL) bit is set in the FPSR EXC byte. Unless the number is so grossly
underflowed that denormalization will produce a zero, it is also denormalized.
Denormalizing a number causes a loss of accuracy, but a zero is not returned unless
absolutely necessary. If a number is grossly underflowed, the MC68881 will return a zero.
For more details on underflow, refer to 4.1.2.5 UNDERFLOW.

If no underflow occurs, the internal result is rounded according to the user-selected rounding
precision and rounding mode. Refer to Figure 4.2 for a detailed description of how rounding
is performed. After rounding, the inexact bit (INEX2) is set appropriately. Lastly, the
magnitude of the result is checked to see if it is too large to be represented in the current
rounding precision. If so, the overflow (OVFL) bit is set and a correctly signed infinity or
correctly signed largest number is returned, depending on the rounding mode in effect. For
details or: overflow refer to 4.1.2.4 OVERFLOW.

3.4.3 Individual Instruction Descriptions

The following notation is used in the detailed instruction definitions that follow:
(operand) Contents of the referenced location or register.

<fmt> Operand data format: Byte, word, long, single, double, extended, or packed
(denoted in the assembler syntax as an extension to the instruction mnemonic of
.B, W, .L, .S, .D, .X or P, respectively).

<ea> Any valid MC68020 addressing mode

<label> A relative label used by an assembler to calculate a displacement

<list> A list of the floating-point data registers or control registers

- The left operand is moved to the location specified by the right operand.

FPcr One of the three floating-point system control registers (FPCR, FPSR, or FPIAR)

3-18

FPn

FPm
FPc:FPs

+inf
-inf
NAN

One of eight floating-point data registers (always specifies the destination
register)

One of eight floating-point data registers (always specifies the source register)

Two of eight floating-point data registers. This notation is used only with the
FSINCOS instruction and specifies the register pair where the cosine and sine

unhina ara atarad
vaiuco ailv owicu.

Positive infinity
Negative infinity
Not-A-Number
Displacement

An integer (-64 to +17) that specifies the format of a number to be stored in the
packed BCD format

An index into the MC68881 constant ROM

3-19

FABS

Operation:

Assembler FABS.<fmt>

Syntax: FABS.X
FABS.X

Attributes:

Description:

FABS

Absolute Value

Absolute Value of Source — FPn

<ea>,FPn
FPm,FPn
FPn

Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Convert the source operand to extended precision (if necessary) and store the absolute

value of that operand into the destination floating-point data register.

Operation Table:

Destination

Source

In Range Zero Infinity

Result

Absolute Value Absolute Value Absolute Value

Notes: 1. If the source operand is a NAN, refer to 3.4.2.2 for more information.

Status Register:
Condition Codes:

Quotient Byte:

Exception Byte:

Affected as described in 3.4.2.3.1.

Not affected.

BSUN Cleared

SNAN Refer to 3.4.2.2.

OPERR Cleared

OVFL Cleared

UNFL If source is an extended precision denormalized number, refer
to 4.1.2.5; cleared otherwise.

Dz Cleared

INEX2 Cleared

INEX1 If <fmt> is Packed, refer to 4.1.2.8, cleared otherwise.

Accrued Exception Byte: Affected as described in 4.1.2.10.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Coprocessor Effective Address
! ! ! ! ID 0 0 0 Mode | Register
Source Destination
0 [RM] 0 | gpacifier Register ¢ o 1 1 0 0 0

Instruction Fields:

Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruction.
Motorola assemblers default to ID=1 for the MC68881.

3-20

F A B S Absolute Value FA B S

Effective Address Field — Determines the addressing mode for external operands.
If R/M = 0, this field is unused, and should be all zeroes.
If R/M = 1, this field is encoded with an M68000 addressing mode as shown:

Addr. Mode | Mode Register Addr. Mode | Mode Register
Dn* 000 reg. number: Dn (xxx).W 111 000
An — — {xxx).L 111 001
(An) 010 reg. number: An #<data> 111 100

(An)+ 011 reg. number: An
-(An) 100 reg. number: An

(d16,An) 101 reg. number: An (d16,PC) 111 010

(dg,An,Xn) 110 reg. number: An (dg,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number: An (bd,PC,Xn) 111 011

([bd,An,Xn],od) 110 reg. number: An ([bd,PC,Xn},0d) 111 011

([bd,An],Xn,od) 110 reg. number: An ({bd,PC],Xn,0d) 111 011

* Only if <fmt> is Byte, Word, Long or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.

Source Specifier Field — Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register, FPm.
If R’M = 1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn. If R/M=0
and the source and destination fields are equal, then the input operand is taken from the
specified floating-point data register, and the result is then written into the same register. |f
the single register syntax is used, Motorola assemblers will set the source and destination
fields to the same value.

3-21

FACOS Arc Cosine FACOS

Operation: Arc Cosine of Source — FPn

Assembler FACOS.<fmt> <ea>,FPn
Syntax: FACOS.X FPm,FPn
FACOS.X FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Description: Convert the source operand to extended precision (if necessary) and calculate the arc
cosine of that value. Return the result to the destination floating-point data register. The function is
not defined for source operands outside of the range [-1...+1}]; if the source is not in the correct
range, a NAN is returned as the result and the OPERR bit is set in the FPSR. If the source is in the
correct range, the result will have a value in the range of [0...x].

Operation Table:

Source In Range Zero Infinity
Destination + - + - +

Result Arc Cosine +T/2 NANT

Notes: 1. Sets the OPERR bit in the FPSR exception byte.
2. If the source operand is a NAN, refer to 3.4.2.2 for more information.

Status Register:

Condition Codes: Affected as described in 3.4.2.3.1.
Quotient Byte: Not affected.
Exception Byte: BSUN Cleared

SNAN Refer to 3.4.2.2.

OPERR Set if the source is infinity, > +1 or < -1; cleared otherwise.
OVFL Cleared

UNFL Cleared

Dz Cleared

INEX2 Refer to 4.1.2.7.

INEX1 If <fmt> is Packed, refer to 4.1.2.8, cleared otherwise.

Accrued Exception Byte: Affected as described in 4.1.2.10.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Coprocessor Effective Address
! ! ! ! ID 0 0 0 Mode | Register
Source Destination
0 |RM] 0 Specifier Register 0 0 ! ! 1 0 0

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruction.
Motorola assemblers default to ID=1 for the MC68881.

3-22

FACOS Arc Cosine FACOS

Effective Address Field — Determines the addressing mode for external operands.
If R/M = 0, this field is unused, and should be all zeroes.
If R/M = 1, this field is encoded with an M68000 addressing mode as shown:

Addr. Mode | Mode Register Addr. Mode | Mode Register

Dn* 000 reg. number: Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number: An #<data> 111 100
(An)+ 011 reg. number: An
-(An) 100 reg. number: An

(d16,An) 101 reg. number: An (d16,PC) 111 010

(dg,An,Xn) 110 reg. number: An (dg,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number: An (bd,PC,Xn) 111 011

([bd,An,Xn],od) 110 reg. number: An ([bd,PC,Xn],0d) 111 011

([bd,An],Xn,od) 110 reg. number: An ([bd,PC],Xn,od) 111 011

* Only if 4<mt> is Byte, Word, Long or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.

Source Specifier Field — Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register, FPm.
If R'M = 1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn. If R/M=0
and the source and destination fields are equal, then the input operand is taken from the
specified floating-point data register, and the result is then written into the same register. |f
the single register syntax is used, Motorola assemblers will set the source and destination
fields to the same value.

3-23

FADD

FADD

Add

Operation: Source + FPn — FPn

Assembler FADD.<fmt> <ea>,FPn

Syntax: FADD.X FPm,FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Description: Convert the source operand to extended precision (if necessary) and add that number to

the number contained in the destination floating-point data register. The result is stored in the
destination floating-point data register

Operation Table:

Source In Range Zero Infinity
Destination + - + - +
In Range Add Add +inf -inf
1
Zero * Add +00] +int - inf
v.U' -U.U
nfinit +inf +inf +inf NAN2
ny : - inf - inf NAN2 - inf

Notes: 1. Returns +0.0 in rounding modes RN, RZ and RP; returns -0.0 in RM.
2. Sets the OPERR bit in the FPSR exception byte.
3. If either operand is a NAN, refer to 3.4.2.2 for more information.

Status Register:
Condition Codes

Quotient Byte:

Exception Byte:

Accrued Exception Byte:

Instruction Format:

Affected as described in 3.4.2.3.1.

Not affected.

BSUN Cleared

SNAN Refer to 3.4.2.2.

OPERR Set if the source and the destination are opposite-signed
infinities, cleared otherwise.

OVFL Refer to 4.1.2.4.

UNFL Refer to 4.1.2.5.

Dz Cleared

INEX2 Refer to 4.1.2.7.

INEX1 If <fmt> is Packed, refer to 4.1.2.8, cleared otherwise.

Affected as described in 4.1.2.10.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Coprocessor Effective Address
T 1 11 D 0 0 0 Mode | Register
Source Destination
0 [RMf 0 Specifier Register 0 ! : 0 0 ! B

3-24

FADD

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruction.

Add

Motorola assemblers default to ID=1 for the MC68881.

FADD

Effective Address Field — Determines the addressing mode for external operands.
If R/M = 0, this field is unused, and should be all zeroes.

If R/M = 1, this field is encoded with an M68000 addressing mode as shown:

* Only if <tmt> is Byte, Word, Long or Single.

Addr. Mode | Mode Register Addr. Mode | Mode Register

Dn* 000 reg. number: Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number: An #<data> 111 100
(An)+ 011 reg. number: An
-(An) 100 reg. number: An

(d16,An) 101 reg. number: An (d16,PC) 111 010

(dg,An,Xn) 110 reg. number: An (dg,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number: An (bd,PC,Xn) 111 011

([bd,An,Xn},o0d) 110 reg. number: An ([bd,PC,Xn],0d) 111 011

([bd,An],Xn,od) 110 reg. number: An ([bd,PC],Xn,od) 111 011

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.

Source Specifier Field — Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register, FPm.

If R/M = 1, specifies the source data format:

000
001
010
011
100
101
110

WOSTXOr

Long Word Integer
Single Precision Real
Extended Precision Real
Packed Decimal Real
Word Integer

Double Precision Real
Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn.

3-25

FASIN Arc Sine FAS'N

Operation: Arc Sine of the Source — FPn

Assembler FASIN.<fmt> <ea>,FPn
Syntax: FASIN.X FPm,FPn
FASIN.X FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Description: Convert the source operand to extended precision (if necessary) and calculate the arc
sine of the number. The result is stored in the destination floating-point data register. The function
is not defined for source operands outside of the range [-1...+1]; if the source in not in the correct
range, a NAN is returned as the result and the OPERR bit is set in the FPSR. If the source is in the
correct range, the result will have a value in the range of [-n/2...4+1/2).

Operation Table:

Source In Range Zero Infinity
Destination + - + - +

Result Arc Sine +0.0 -0.0 NANT

Notes: 1. Sets the OPERR bit in the FPSR exception byte.
2. If the source operand is a NAN, refer to 3.4.2.2 for more information.

Status Register:

Condition Codes: Affected as described in 3.4.2.3.1.
Quotient Byte: Not affected.
Exception Byte: BSUN Cleared

SNAN Refer to 3.4.2.2.

OPERR Set if the source is infinity, > +1 or < -1; cleared otherwise.
OVFL Cleared

UNFL Cleared

DZ Cleared

INEX2 Refer to 4.1.2.7.

INEX1 If <fmt> is Packed, refer to 4.1.2.8, cleared otherwise.

Accrued Exception Byte: Affected as described in 4.1.2.10.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Coprocessor Effective Address
! ! T ID o 0 0 Mode | Register
Source Destination
0 |RM| 0 Specifier Register 0 0 0 ! ! 0 0

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruction.
Motorola assemblers default to ID=1 for the MC68881.

3-26

FASIN Are Sine FASIN

Effective Address Field — Determines the addressing mode for external operands.
If R/M = 0, this field is unused, and should be all zeroes.
If R/M = 1, this field is encoded with an M68000 addressing mode as shown:

Addr. Mode | Mode Register Addr. Mode | Mode Register

Dn* 000 reg. number: Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number: An #<data> 111 100
(An)+ 011 reg. number: An
-(An) 100 reg. number: An

(d16,An) 101 reg. number: An (d16,PC) 111 010

(dg,An,Xn) 110 reg. number: An (dg,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number: An (bd,PC,Xn) 111 011

([bd,An,Xn},0d) 110 reg. number: An ([bd,PC,Xn],0d) 111 011

([bd,An],Xn,od) 110 reg. number: An ([bd,PC},Xn,od) 111 011

* Only if <fmt> is Byte, Word, Long or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.

Source Specifier Field — Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register, FPm.
If R’'M = 1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn. If R/M=0
and the source and destination fields are equal, then the input operand is taken from the
specified floating-point data register, and the result is then written into the same register. If
the single register syntax is used, Motorola assemblers will set the source and destination
fields to the same value.

3-27

FATAN

FATAN

Arc Tangent

Operation: Arc Tangent of Source — FPn
Assembler FATAN.<fmt> <ea>,FPn
Syntax: FATAN.X FPm,FPn
FATAN.X FPn
Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)
Description: Convert the source operand to extended precision (if necessary) and calculate the arc

tangent of that value. Return the result to the destination floating-point data register. The result will
have a value in the range of [-/2...+r/2].

Operation Table:

Destination

Source

In Range

Zero

Infinity
+

Result

Arc Tangent

+0.0

-0.0

+n/2

-n/2

Notes: 1. If the source operand is a NAN, refer to 3.4.2.2 for more information.

Status Register:
Condition Codes:

Quotient Byte:

Exception Byte:

Affected as described in 3.4.2.3.1.

Not affected.

BSUN
SNAN
OPERR
OVFL
UNFL
Dz
INEX2
INEX1

Cleared

Refer to 3.4.2.2.

Cleared

Cleared

Refer to 4.1.2.5.

Cleared

Refer to 4.1.2.7.

If <fmt> is Packed, refer to 4.1.2.8, cleared otherwise.

Accrued Exception Byte: Affected as described in 4.1.2.10.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Coprocessor Effective Address
11 1 1 D 0o 0 o0 Mode | Register
Source Destination
0 [RM| 0 Specifier Register 0 0 0 ! 0 ! 0

Instruction Fields:

Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruction.
Motorola assemblers default to ID=1 for the MC68881.

3-28

FATAN Arc Tangent FATAN

Effective Address Field — Determines the addressing mode for external operands.
If R/M = 0, this field is unused, and should be all zeroes.
If R/M = 1, this field is encoded with an M68000 addressing mode as shown:

Addr. Mode | Mode Register Addr. Mode | Mode Register

Dn* 000 reg. number: Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number: An #<data> 111 100
(An)+ 011 reg. number: An
-(An) 100 reg. number: An

(d16,An) 101 reg. number: An (d16,PC) 111 010

(dg,An,Xn) 110 reg. number: An (dg,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number: An (bd,PC,Xn) 111 011

([bd,An,Xn],od) 110 reg. number: An ([bd,PC,Xn],0d) 111 011

([bd,An],Xn,od) 110 reg. number: An ([bd,PC],Xn,0d) 111 011

* Only it <fmt> is Byte, Word, Long or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.

Source Specifier Field — Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register, FPm.
If R’/M = 1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn. If R/IM=0
and the source and destination fields are equal, then the input operand is taken from the
specified floating-point data register, and the result is then written into the same register. If
the single register syntax is used, Motorola assemblers will set the source and destination
fields to the same value.

3-29

FATANH

Hyperbolic Arc Tangent

FATANH

Operation: Hyperbolic Arc Tangent of Source — FPn
Assembler FATANH.<fmt> <ea>,FPn
Syntax: FATANH.X FPm,FPn
FATANH.X FPn
Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)
Description: Convert the source operand to extended precision (if necessary) and calculate the

hyperbolic arc tangent of that value. Return the result to the destination floating-point data register.
The function is not defined for source operands outside of the range (-1...+1), with the result equal
to -infinity or + infinity if the source is equal to +1 or -1, respectively. If the source is outside of the
range [-1...+1], a NAN is returned as the result and the OPERR bit is set in the FPSR.

Operation Table:

Source In Range Zero Infinity
Destination + - + + -
Hyperbolic 1
Result Arc Tangent +0.0 -0.0 NAN

Notes: 1. Sets the OPERR bit in the FPSR exception byte.

2. If the source operand is @ NAN, refer to 3.4.2.2 for more information.

Status Register:
Condition Codes: Affected as described in 3.4.2.3.1.

Quotient Byte: Not affected.

Set if the source is > +1 or < -1; cleared otherwise.

Set if the source is equal to +1 or -1; cleared otherwise.

Exception Byte: BSUN Cleared
SNAN Refer to 3.4.2.2.
OPERR
OVFL Cleared
UNFL Refer to 4.1.2.5.
Dz
INEX2 Refer to 4.1.2.7.
INEX1

Accrued Exception Byte:

Instruction Format:

If <fmt> is Packed, refer to 4.1.2.8; cleared otherwise.

Affected as described in 4.1.2.10.

15 14 13 12 11 10 9 8 7 6 4 3 2 1 0
Coprocessor Effective Address
1 1 1 1 ID 0 0 0 Mode | Register
Source Destination
0 |RM| 0 Specifier Register 0 0 1 ! 0 !

Instruction Fields:

Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruction.

Motorola assemblers default to ID=1 for the MC68881.

3-30

F ATA N H Hyperbolic Arc Tangent F ATA N H

Effective Address Field — Determines the addressing mode for external operands.
If R/M = 0, this field is unused, and should be all zeroes.
If R/M =1, this field is encoded with an M68000 addressing mode as shown:

Addr. Mode | Mode Register Addr. Mode | Mode Register

Dn* 000 reg. number: Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number: An #<data> 111 100
(An)+ 011 reg. number: An
-(An) 100 reg. number: An

(dy6,An) 101 reg. number: An (d16,PC) 111 010

(dg,An,Xn) 110 reg. number: An (dg,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number: An (bd,PC,Xn) 111 011

([bd,An,Xn},0d) 110 reg. number: An ([bd,PC,Xn],o0d) 111 011

([bd,An],Xn,od) 110 reg. number: An ([bd,PC],Xn,0d) 111 011

* Only if <fmt> is Byte, Word, Long or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.

Source Specifier Field — Specifies the source register or data format.
If R’M = 0, specifies the source floating-point data register, FPm.
If R’M = 1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn. If R/M=0
and the source and destination fields are equal, then the input operand is taken from the
specified floating-point data register, and the result is then written into the same register. |f
the single register syntax is used, Motorola assemblers will set the source and destination
fields to the same value.

3-31

F BCC Branch Conditionally FBCC

Operation: If condition true, then PC + d -PC

Assembler
Syntax: FBcc.<size> <iabei>

Attributes: Size = (Word, Long)

Description: If the specified floating-point condition is met, program execution continues at the
location (PC) + displacement. The displacement is a twos complement integer which counts the
relative distance in bytes. The value of the PC used to calculate the destination address is the
address of the branch instruction plus two. If the displacement size is word, then a 16-bit
displacement is stored in the word immediately following the instruction operation code. If the
displacement size is long word, then a 32-bit displacement is stored in the two words immediately
following the instruction operation code.

The conditional specifier "cc" may specify any one of the 32 floating-point conditional tests as
described in 3.3 Conditional Test Definitions.

Status Register:

Condition Codes: Not affected.
Quotient Byte: Not affected.
Exception Byte: BSUN Set if the NAN condition code is set and the condition selected

is an IEEE non-aware test.
SNAN Not Affected
OPERR Not Affected
OVFL Not Affected
UNFL Not Affected
Dz Not Affected
INEX2 Not Affected
INEX1 Not Affected

Accrued Exception Byte: If the BSUN bit is set in the FPSR exception byte, then IOP is set in the
accumulated exception byte. All other bits are not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

“p’ﬁgess” 0 1 |Size Conditional Predicate

1 1 1 1

16-bit Displacement, or Most Significant Word of 32-bit Displacement

Least Significant Word of 32-bit Displacement (if needed)

instruction Fieids:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruction.
Motorola assemblers default to ID=1 for the MC68881.

3-32

F BCC Branch Conditionally FBCC

Size Field — Specifies the size of the signed displacement:
It Format = 0, then the displacement is 16-bits and will be sign extended before use.
If Format = 1, then the displacement is 32-bits.

Conditional Predicate Field — Specifies one of 32 conditional tests as defined in section 3.3.

Note: When a BSUN exception occurs, it causes a pre-instruction exeption to be taken by the main
processor. If the exception handler returns without modifying the image of the PC on the stack
frame (to point to the instruction following the FBcc), then it must clear the cause of the exception
(by clearing the NAN bit or disabling the BSUN trap) or the exception will occur again immediately
upon return to the routine that caused the exception.

3-33

FCMP

FCMP

Compare

Operation: FPn - Source

Assembler FCMP.<fmt> <ea>,FPn

Syntax: FCMP.X FPm,FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Description: Convert the source operand to extended precision (if necessary) and subtract that

number from the destination floating-point data register. The result of the subtraction is not
retained, but it is used to set the floating-point condition codes as described in section 3.4.2.3.1.

Operation Table: The entries in this operation table differ from those of the tables describing most of
the MC68881 instructions. For each combination of input operand types, the condition code bits
that may be set are indicated. If the name of a condition code bit is given and is not enclosed in
brackets, then it is always set. If the name of a condition code bit is enclosed in brackets, then that
bit is either set or cleared, as appropriate. If the name of a condition code bit is not given, then that
bit is always cleared by the operation. The infinity bit is always cleared by the FCMP instruction,
since it is not used by any of the conditional predicate equations. Note that the NAN bit is not
shown, since NANs are always handled in the same manner (as described in section 3.4.2.2).

Source In Range Zero Infinity
Destination + - + - + -
+ | {NZ} none | none none N none
In Range 1N Ng | N N N none
+ N none z z N none
Zero
- N none NZ NZ N none
. none none | none none 4 none
Infinity N N N N N NZ

Notes: 1. If either operand is a NAN, refer to 3.4.2.2 for more information.

Status Register:
Condition Codes:

Quotient Byte:

Exception Byte:

Affected as described in the operation table above.

Not affected.

BSUN Cleared

SNAN Refer to 3.4.2.2.
OPERR Cleared

OVFL Cleared

UNFL Cleared

DZ Cleared

INEX2 Cleared

INEX1

If <fmt> is Packed, refer to 4.1.2.8, cleared otherwise.

Accrued Exception Byte: Affected as described in 4.1.2.10.

3-34

FC M p Compare FCMP

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Coprocessor Effective Address
o1 D 0 o0 o Mode | Register
Source Destination
0 |RM)| 0 Specifier Register 0 1 1 1 0 0 0

Instruction Fields:
Coprocessor 1D Field — Specifies which coprocessor in the system is to execute this instruction.
Motorola assemblers default to ID=1 for the MC68881.

Etfective Address Field — Determines the addressing mode for external operands.
If R’M = 0, this field is unused, and should be all zeroes.
If R/M = 1, this field is encoded with an M68000 addressing mode as shown:

Addr. Mode | Mode Register Addr. Mode | Mode Register

Dn* 000 reg. number: Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number: An #<data> 111 100
(An)+ 011 reg. number: An
-(An) 100 reg. number: An

(dy6,An) 101 reg. number: An (d16.PC) 111 010

(dg,An,Xn) 110 reg. number: An (dg,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number: An (bd,PC,Xn) 111 011

([bd,An,Xn},od) 110 reg. number: An ([bd,PC,Xn],0d) 111 011

([bd,An],Xn,od) 110 reg. number: An {[bd,PC]},Xn,0d) 111 011

* Only if <fmt> is Byte, Word, Long or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.

Source Specifier Field — Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register, FPm.
If R'M = 1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn.

3-35

FCOS

Operation: Cosine of Source — FPn

Assembler FCOS.<fmt> <ea>,FPn

Syntax: FCOS.X FPm,FPn
FCOS.X FPn

Attributes:

Description:

FCOS

Cosine

Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Convert the source operand to extended precision (if necessary) and calculate the cosine

of that value. Return the result to the destination floating-point data register. The function is not

defined for source operands of tinf

inity. If the source operand is not in the range of [-2x...+27],

then the argument will be reduced to within that range before the cosine is calculated. However,
large arguments may lose accuracy during reduction, and very large arguments (greater than
approximately 1020) will lose all accuracy. The result will be in the range of [-1...+1].

Operation Table:

Source
Destination

In Range

Zero

Infinity

Result

Cosine

+1.0

NANT

Notes: 1. Sets the OPERR bit in the FPSR exception byte.
2. If the source operand is a NAN, refer to 3.4.2.2 for more information.

Status Register:
Condition Codes:

Quotient Byte:

Affected as described in 3.4.2.3.1.

Not affected.

Exception Byte: BSUN Cleared
SNAN Refer to 3.4.2.2.
OPERR Set if the source operand is tinfinity, cleared otherwise.
OVFL Cleared
UNFL Cleared
Dz Cleared
INEX2 Refer to 4.1.2.7.
INEX1 If <fmt> is Packed, refer to 4.1.2.8, cleared otherwise.

Accrued Exception Byte: Affected as described in 4.1.2.10.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Coprocessor Effective Address
! ! 1o ID 0 0 | Register
Source Destination
0 |RM[O Specifier Register ! ! ! 0 1

3-36

FCOS Cosine FCOS

Instruction Fields:
Coprocessor |ID Field — Specifies which coprocessor in the system is to execute this instruction.
Motorola assemblers default to ID=1 for the MC68881.

Effective Address Field — Determines the addressing mode for external operands.
If RM = 0, this field is unused, and should be all zeroes.
If R/M = 1, this field is encoded with an M68000 addressing mode as shown:

Addr. Mode | Mode Register Addr. Mode | Mode Register

Dn* 000 reg. number: Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number: An #<data> 111 100
(An)+ 011 reg. number: An
-(An) 100 reg. number: An

(d16,An) 101 reg. number: An (d16,PC) 111 010

(dg,An,Xn) 110 reg. number: An (dg,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number: An (bd,PC,Xn) 11 011

([bd,An,Xn],od) 110 reg. number: An ([bd,PC,Xn],0d) 111 011

([bd,An},Xn,od) 110 reg. number: An ([bd,PC]},Xn,0d) 111 011

* Only if <fmt> is Byte, Word, Long or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> o register.

Source Specifier Field — Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register, FPm.
If R'M = 1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn. If R/M=0
and the source and destination fields are equal, then the input operand is taken from the
specified floating-point data register, and the result is then written into the same register. If
the single register syntax is used, Motorola assemblers will set the source and destination
fields to the same value.

3-37

FCOSH

FCOSH

Hyperbolic Cosine

Operation: Hyperbolic Cosine of Source — FPn
Assembler FCOSH.<fmt> <ea>,FPn
Syntax: FCOSH.X FPm,FPn
FCOSH.X FPn
Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)
Description: Convert the source operand to extended precision (if necessary) and calculate the

hyperbolic cosine of that value. Return the result to the destination floating-point data register.

Operation Table:

Destination

Source

In Range Zero

+ - +

Infinity

Result

+1.0

Hyperbolic Cosine

+inf

Notes: 1. If the source operand is a NAN, refer to 3.4.2.2 for more information.

Status Register:
Condition Codes:

Quotient Byte:

Exception Byte:

Affected as described in 3.4.2.3.1.

Not affected.

BSUN Cleared

SNAN Refer to 3.4.2.2.

OPERR Cleared

OVFL Refer to 4.1.2.4.

UNFL Cleared

Dz Cleared

INEX2 Refer to 4.1.2.7.

INEX1 If <fmt> is Packed, refer to 4.1.2.8, cleared otherwise.

Accrued Exception Byte:

Affected as described in 4.1.2.10.

Instruction Format:

15 14 13 12 11 10 9 8 7 4 3 2 A1 0
1 1 11 Coprocessor | o Effective Address
D Mode | Register
Source Destination
0 |RM] 0 Specifier Register ! ! 0 0 !

Instruction Fields:

Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruction.
Motorola assemblers default to ID=1 for the MC68881.

3-38

FCOSH

Hyperbolic Cosine

FCOSH

Effective Address Field — Determines the addressing mode for external operands.
If R/M = 0, this field is unused, and should be all zeroes.

If R/M = 1, this field is encoded with an M68000 addressing mode as shown:

Addr. Mode | Mode Register Addr. Mode | Mode Register

Dn* 000 reg. number: Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number: An #<data> 111 100
(An)+ 011 reg. number: An
-(An) 100 reg. number: An

(d16,An) 101 reg. number: An (d16,PC) 111 010

(dg,An,Xn) 110 reg. number: An (dg,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number: An (bd,PC,Xn) 111 011

([bd,An,Xn],od) 110 reg. number: An ([bd,PC,Xn],0d) 111 011

([bd,An],Xn,od) 110 reg. number: An ([bd,PC],Xn,od) 111 011

* Only if <fmt> is Byte, Word, Long or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.

Source Specifier Field — Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register, FPm.
If R’M = 1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn. if R/M=0
and the source and destination fields are equal, then the input operand is taken from the
specified floating-point data register, and the result is then written into the same register. If
the single register syntax is used, Motorola assemblers will set the source and destination
fields to the same value.

3-39

FD BCC Test Condition, Decrement, and Branch FD BCC

Operation: If condition true then no operation;
else Dn-1 - Dn;
if Dn # -1
then PC +d - PC

Assembler FDBcc Dn,<label>
Syntax:

Attributes: Unsized

Description: This instruction is a looping primitive of three parameters: a floating-point condition, a
counter (an MC68020 data register) and a 16-bit displacement. The instruction first tests the
condition to determine if the termination condition for the loop has been met, and if so, the main
processor proceeds to execute the next instruction in the instruction stream. If the termination
condition is not true, the low order 16-bits of the counter register are decremented by one. If the
result is -1, the counter is exhausted and execution continues with the next instruction. If the result
is not equal to -1, execution continues at the location specified by the current value of the PC plus
the sign-extended 16-bit displacement. The value of the PC used in the branch address calculation
is the address of the FDBcc instruction plus two.

The conditional specifier "cc" may specify any one of the 32 floating-point conditional tests as
described in 3.3 Conditional Test Definitions.

Status Register:

Condition Codes: Not affected.
Quotient Byte: Not affected.
Exception Byte: BSUN Set if the NAN condition code is set and the condition selected

is an IEEE non-aware test.
SNAN Not Affected
OPERR Not Affected
OVFL Not Affected
UNFL Not Affected
Dz Not Affected
INEX2 Not Affected
INEX1 Not Affected

Accrued Exception Byte: If the BSUN bit is set in the exception byte, then IOP is set in the accumu -
lated exception byte. All other bits are not affected.

3-40

F D B C C Test Condition, Decrement, and Branch F D B C C

Instruction Format:
15 14 13 12 11t 10 9 8 7 6 5 4 3 2 1 0

Coprocessor 0 1 Count
ID Register

0 0 0 0 0 0 0 0 0 0 Conditional Predicate

16-bit Displacement

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruction.
Motorola assemblers default to ID=1 for the MC68881.

Count Register Field — Specifies main processor data register that is used as the counter.

Conditional Predicate Field — Specifies one of the 32 floating-point conditional tests as
described in 3.3.

Displacement Field — Specifies the branch distance (from the address of the instruction plus 2) to
the destination in bytes.

Notes: 1. The terminating condition is like that defined by the UNTIL loop constructs of high-level
languages. For example: FDBOLT can be stated as "decrement and branch until ordered less
than".

2. There are two basic ways of entering a loop: at the beginning, or by branching to the trailing
FDBcc instruction. If a loop structure terminated with FDBcc is entered at the beginning, the
control counter must be one less than the number of loop executions desired. This count is
useful for indexed addressing modes and dynamically specified bit operations. However,
when entering a loop by branching directly to the trailing FDBcc instruction, the count should
equal the loop execution count. In this case, if the counter is zero when the loop is entered,
the FDBcc instruction will not branch, causing a complete bypass of the main loop.

3. When a BSUN exception occurs, it causes a pre-instruction exeption to be taken by the main
processor. If the exception handler returns without modifying the image of the PC on the stack
frame (to point to the instruction following the FDBcc), then it must clear the cause of the
exception (by clearing the NAN bit or disabling the BSUN trap) or the exception will occur again
immediately upon return to the routine that caused the exception.

3-41

FDIV

Divide

FDIV

Operation: FPn+ Source — FPn

Assembler FDIV.<fmt> <ea>,FPn

Syntax: FDIV.X FPm,FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Description: Convert the source operand to extended precision (if necessary) and divide that number
into the number contained in the destination floating-point data register. The result is stored in the

destination floating-point data register

Operation Table:

Source In Range Zero Infinity
Destination + - + - + -
+inf1 -inf1 | +0.0 -0.0
In Range) Divide Zinf1 +infl | -00 +0.0
Zero +] +0.0 +0.0 NAN 2 +0.0 -0.0
-1 -0.0 -0.0 -0.0 +0.0
. +int -int +inf -int
Infinity -in sinf | -inf +in NANZ

Notes: 1. Sets the DZ bit in the FPSR exception byte.
2. Sets the OPERR bit in the FPSR exception byte.
3. If either operand is a NAN, refer to 3.4.2.2 for more information.

Status Register:

Condition Codes: Affected as described in 3.4.2.3.1.

Quotient Byte: Not affected.

Exception Byte: BSUN Cleared
SNAN Refer to 3.4.2.2.
OPERR Set for 0/0 or infinity/infinity, cleared otherwise.
OVFL Refer to 4.1.2.4.
UNFL Refer to 4.1.2.5.
Dz Set if the source is zero and the destination is in range, cleared
otherwise.
INEX2 Refer to 4.1.2.7.
INEX1 If <fmt> is Packed, refer to 4.1.2.8, cleared otherwise.

Accrued Exception Byte: Affected as described in 4.1.2.10.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Coprocessor Effective Address
ot D o 0 0 Mode | Register
Source Destination
0 [RM] 0 Specifier Register 0 1 0 0 0 0 0

3-42

FDIV

Instruction Fields:
Coprocessor |ID Field — Specifies which coprocessor in the system is to execute this instruction.

Divide

Motorola assemblers default to ID=1 for the MC68881.

FDIV

Effective Address Field — Determines the addressing mode for external operands.
If R/M = 0, this field is unused, and should be all zeroes.

If R/M = 1, this field is encoded with an M68000 addressing mode as shown:

Addr. Mode | Mode Register Addr. Mode | Mode Register

Dn* 000 reg. number: Dn (xxx). W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number: An #<data> 111 100
(An)+ 011 reg. number: An
-(An) 100 reg. number: An

(dy6,An) 101 reg. number: An (d16,PC) 111 010

(dg,An,Xn) 110 reg. number: An (dg,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number: An (bd,PC,Xn) 111 011

([bd,An,Xn),0d) 110 reg. number: An ([bd,PC,Xn],0d) 111 011

([bd,An],Xn,od) 110 reg. number: An ([bd,PC],Xn,od) 111 011

* Only if <fmt> is Byte, Word, Long or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.

1 __ Tha nnar

Y-y
<Ca> W icy

ay tn ransictar
IS

Source Specifier Field — Specifies the source register or data format.

If R/M = 0, specifies the source floating-point data register, FPm.
If R/M = 1, specifies the source data format:

000
001
010
011
100
101
110

WOSTXONOr

Long Word Integer
Single Precision Real

Extended Precision Real

Packed Decimal Real

Word Integer

Double Precision Real

Rvte Integer
Byle Integer

Destination Register Field — Specifies the destination floating-point data register, FPn.

3-43

FETOX

FETOX

Operation: e(Source) _, Fpp
Assembler FETOX.<fmt> <ea>,FPn
Syntax: FETOX.X FPm,FPn
FETOX.X FPn
Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)
Description: Convert the source operand to extended precision (if necessary) and calculate e to the

power of that number. The result is stored in the destination floating-point data register

Operation Table:

Destination

Source

In Range

Zero

Infinity
+

Result

eX

+1.0

+inf

+0.0

Notes:

Status Register:
Condition Codes:

Quotient Byte:

Exception Byte:

Affected as described in 3.4.2.3.1.

Not affected.

BSUN
SNAN
OPERR
OVFL
UNFL
Dz
INEX2
INEX1

Cleared

Refer to 3.4.2.2.

Cleared
Refer to 4.1

2.4
Refer to 4.1.2.5.

Cleared

Refer to 4.1.2.7.

If the source operand is a NAN, refer to 3.4.2.2 for more information.

If <fmt> is Packed, refer to 4.1.2.8, cleared otherwise.

Accrued Exception Byte: Affected as described in 4.1.2.10.

Instruction Format:

i5 14 13 12 11 10 9 8 7 8 4 3 2 1 0
1 1 1 1 Coprocessor 0 0 Effective Address
D Mode | Register
Source Destination
0 [RM] 0 Specifier Register 1 0 0 0 0

Instruction Fields:

Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruction.
Motorola assemblers default to ID=1 for the MC68881.

3-44

FETOX ox FETOX

Effective Address Field — Determines the addressing mode for external operands.
If RM = 0, this field is unused, and should be all zeroes.
If R/M = 1, this field is encoded with an M68000 addressing mode as shown:

Addr. Mode | Mode Register Addr. Mode | Mode Register

Dn* 000 reg. number: Dn (xxx).W 111 000

An - — (xxx).C 111 001

(An) 010 reg. number: An #<data> 111 100
(An)+ 011 reg. number: An
-(An) 100 reg. number: An

(d16,An) 101 reg. number: An (d16,PC) 111 010

(dg,An,Xn) 110 reg. number: An (dg,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number: An (bd,PC,Xn) 111 011

([bd,An,Xn},od) 110 reg. number: An ([bd,PC,Xn],0d) 111 011

([bd,An},Xn,od) 110 reg. number: An ([bd,PCJ,Xn,0d) 111 011

* Only if <fmt> is Byte, Word, Long or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.

Source Specifier Field — Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register, FPm.

it R'M = 1, specifies the source data format:
000 L Long Word Integer
001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer
101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn. If R/M=0
and the source and destination fields are equal, then the input operand is taken from the
specified floating-point data register, and the result is then written into the same register. |f
the single register syntax is used, Motorola assemblers will set the source and destination
fields to the same value.

3-45

FETOXM1 FETOXM1

eX -1

Operation: e(Source) _ 1 _, Fpn
Assembler FETOXM1.<fmt> <ea>,FPn
Syntax: FETOXM1.X FPm,FPn
FETOXM1.X FPn
Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)
Description: Convert the source operand to extended precision (if necessary) and calculate e to the

power of that number, then subtract one from that value. The result is stored in the destination
floating-point data register

Operation Table:

Source In Range Zero Infinity
Destination + - + - + -
Result e ~1 +0.0 0.0 | +int 1.0
Notes: 1. If the source operand is a NAN, refer to 3.4.2.2 for more information.
Status Register:
Condition Codes: Affected as described in 3.4.2.3.1.
Quotient Byte: Not affected.
Exception Byte: BSUN Cleared
SNAN Refer to 3.4.2.2.
OPERR Cleared
OVFL Refer to 4.1.2.4.
UNFL Refer to 4.1.2.5
Dz Cleared
INEX2 Refer to 4.1.2.7.
INEX1 If <fmt> is Packed, refer to 3.?, cleared otherwise.
Accrued Exception Byte: Affected as described in 4.1.2.10
Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Coprocessor Effective Address
! 1 1 1 ID 0 0 0 Mode | Register
Source Destination
0 [RM] 0 Specifier Register 0 0 0 ! 0 0 0

Instruction Fields:

Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruction.
Motorola assemblers default to ID=1 for the MC68881.

3-46

FETOXM1 ex 1 FETOXMA1

Effective Address Field — Determines the addressing mode for external operands.
If R/M = 0, this field is unused, and should be all zeroes.
If R/M = 1, this field is encoded with an M68000 addressing mode as shown:

Addr. Mode | Mode Register Addr. Mode | Mode Register

Dn* 000 reg. number: Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number: An #<data> 111 100
(An)+ 011 reg. number: An
-(An) 100 reg. number: An

(d16,An) 101 reg. number: An (d16,PC) 111 010

(dg,An,Xn) 110 reg. number: An (dg,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number: An (bd,PC,Xn) 111 011

([bd,An,Xn],od) 110 reg. number: An ([bd,PC,Xn],0d) 111 011

([bd,An],Xn,od) 110 reg. number: An ([bd,PC],Xn,od) 111 011

* Only if <mt> is Byte, Word, Long or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.

Source Specifier Field — Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register, FPm.
If R/M = 1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte integer

Destination Register Field — Specifies the destination floating-point data register, FPn. If R/M=0
and the source and destination fields are equal, then the input operand is taken from the
specified floating-point data register, and the result is then written into the same register. |f
the single register syntax is used, Motorola assemblers will set the source and destination
fields to the same value.

3-47

FGETEXP

Operation:

Assembler
Syntax:

Attributes:

Get Exponent

Exponent of Source — FPn

FGETEXP.<fmt> <ea>,FPn
FGETEXP.X FPm,FPn
FGETEXP.X FPn

Format = (Byte, Word, Long, Single, Double, Extended, Packed)

FGETEXP

Description: Convert the source operand to extended precision (if necessary) and extract the binary
exponent. Convert the extracted exponent to an extended precision floating-point number,
remove the exponent bias and store the result in the destination floating-point data register.

Operation Table:

Source In Range Zero Infinity

Destination + - + - +

Result Exponent +0.0 0.0 NAN

Notes: 1. Sets the OPERR bit in the FPSR exception byte.
2. If the source operand is a NAN, refer to 3.4.2.2 for more information.

Status Register:

Condition Codes:

Quotient Byte:

Affected as described in 3.4.2.3.1.

Not affected.

Exception Byte: BSUN Cleared
SNAN Refer to 3.4.2.2.
OPERR Set if the source is tinfinity, cleared otherwise.
OVFL Cleared
UNFL Cleared
Dz Cleared
INEX2 Cleared
INEX1 If <fmt> is Packed, refer to 4.1.2.8, cleared otherwise.

Accrued Exception Byte: Affected as described in 4.1.2.10.

Instruction Format:
15 14 13 12 M 10

9 8 7 6 5 4 3 2 1 0

Coprocessor Effective Address
oot ID o 0 o Mode | Register
Source Destination
0 [RMf 0 Specifier Register 0 0 ! ! ! ! 0

Instruction Fields:

Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruction.
Motorola assemblers default to ID=1 for the MC68881.

3-48

FGETEXP Get Exponent FGETEXP

Effective Address Field — Determines the addressing mode for external operands.
If R/M = 0, this field is unused, and should be all zeroes.
If R/M = 1, this field is encoded with an M68000 addressing mode as shown:

Addr. Mode | Mode Register Addr. Mode | Mode Register
Dn* 000 reg. number: Dn (xxx).W 111 000
An — — (xxx).L 111 001
(An) 010 reg. number: An #<data> 111 100

(An)+ 011 reg. number: An
-(An) 100 reg. number: An

(d16,An) 101 reg. number: An (d16,PC) 11 010

(dg,An,Xn) 110 reg. number: An (dg,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number: An (bd,PC,Xn) 111 011

([bd,An,Xn),od) 110 reg. number: An ([bd,PC,Xn],0d) 111 011

([bd,An},Xn,od) 110 reg. number: An ([bd,PC},Xn,od) 111 011

* Only if <tmt> is Byte, Word, Long or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.

Source Specifier Field — Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register, FPm.
If R’M = 1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn. If R/M=0
and the source and destination fields are equal, then the input operand is taken from the
specified floating-point data register, and the result is then written into the same register. If

the single register syntax is used, Motorola assemblers will set the source and destination
fields to the same value.

3-49

FGETMAN

Get Mantissa F G ET M A N

Operation: Mantissa of Source — FPn

Assembler FGETMAN.<fmt> <ea>,FPn
Syntax: FGETMAN.X
FGETMAN.X

FPm,FPn
FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Description: Convert the source operand to extended precision (if necessary) and extract the
mantissa. Convert the mantissa to an extended precision value and store the result in the
destination floating-point data register. The result will be in the range [1.0...2.0), with the sign of the
source mantissa, zero, or a NAN.

Operation Table

Destination

Source

In Range Zero Infinity
+ - + - +

Result

Mantissa +0.0 -0.0 NANT

Notes: 1. Sets the OPERR bit in the FPSR exception byte.
2. If the source operand is a NAN, refer to 3.4.2.2 for more information.

Status Register:

Condition Codes:

Quotient Rute:
wuglient oyle!

Exception Byte:

Accrued Exception Byte:

Instruction Format:

Affected as described in 3.4.2.3.1.

Not affected.

BSUN Cleared

SNAN Refer to 3.4.2.2.

OPERR Set if the source is infinity, cleared otherwise.

OVFL Cleared

UNFL Cleared

Dz Cleared

INEX2 Cleared

INEX1 If <fmt> is Packed, refer to 4.1.2.8, cleared otherwise.

Affected as described in 4.1.2.10.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Coprocessor Effective Address
1 1 1 1 D 0 0 0 Mode | Register
Source Destination
0 |RM| 0 Specifier Register 0 0 1 ! ! ! !

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruction.
Motorola assemblers default to ID=1 for the MC68881.

3-50

FGETMAN Get Mantissa FG ETMAN

Effective Address Field — Determines the addressing mode for external operands.
If R/M = 0, this field is unused, and should be all zeroes.
If R/M = 1, this field is encoded with an M68000 addressing mode as shown:

Addr. Mode | Mode Register Addr. Mode | Mode Register

Dn* 000 reg. number: Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number: An #<data> 111 100
(An)+ 011 reg. number: An
-(An) 100 reg. number: An

(d16,An) 101 reg. number: An (d16,PC) 111 010

(dg,An,Xn) 110 reg. number: An (dg,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number: An (bd,PC,Xn) 111 011

([bd,An,Xn],0d) 110 reg. number: An ([bd,PC,Xn],0d) 111 011

([bd,An],Xn,od) 110 reg. number: An ([bd,PC],Xn,o0d) 111 011

* Only if <4mt> is Byte, Word, Long or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.

Source Specifier Field — Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register, FPm.
If R/M = 1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn. If R/M=0
and the source and destination fields are equal, then the input operand is taken from the
specified floating-point data register, and the result is then written into the same register. If
the single register syntax is used, Motorola assemblers will set the source and destination
fields to the same value.

3-51

FINT

Operation:

Assembler
Syntax:

Attributes:

Description:

Integer Part

Integer Part of Source — FPn

FINT.<fmt> <ea>,FPn
FINT.X FPm,FPn
FINT.X FPn

Format = (Byte, Word, Long, Single, Double, Extended, Packed)

FINT

Convert the source operand to extended precision (if necessary), extract the integer par,
and convert it to an extended precision floating-point number. Store the result in the destination
floating-point data register. The integer part is extracted by rounding the extended precision
number to an integer using the current rounding mode selected in the FPCR Control byte. Thus,
the integer part returned is the number that is to the left of the radix point when the exponent is
zero, after rounding. For example, the integer part of 137.57 is 137.0 for the round-to-zero and
round-to-minus infinity modes, and 138.0 for the round-to-nearest and round-to-plus infinity modes.
Note that the result of this operation is a floating-point number.

Operation Table:

Destination

Source

In Range

+

Zero

Infinity
- +

Result

Integer

+0.0

-0.0

+inf -inf

Notes: 1. If the source operand is a NAN, refer to 3.4.2.2 for more information.

Status Register:
Condition Codes

Quotient Byte:

Exception Byte:

Affected as described in 3.4.2.3.1.

Not affected.

BSUN Cleared

SNAN Refer to 3.4.2.2.
OPERR Cleared

OVFL Cleared

UNFL Cleared

Dz Cleared

INEX2 Refer to 4.1.2.7.
INEX1

Accrued Exception Byte: Affected as described in 4.1.2.10.

Instruction Format:

If <fmt> is Packed, refer to 4.1.2.8, cleared otherwise.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Coprocessor Effective Address
1 1 1 1 ID 0 0 | Register
Source Destination
0 [RM] 0 Specifier Register 0 0 0 0 0 !

3-52

FINT

Instruction Fields:

Integer Part F I N T

Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruction.
Motorola assemblers default to ID=1 for the MC68881.

Effective Address Field — Determines the addressing mode for external operands.
If R/M = 0, this field is unused, and should be all zeroes.
If R/M = 1, this field is encoded with an M68000 addressing mode as shown:

Addr. Mode | Mode Register Addr. Mode | Mode Register

Dn* 000 reg. number: Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number: An #<data> 111 100
(An)+ 011 reg. number: An
-(An) 100 reg. number: An

(d16,An) 101 reg. number: An (d16.PC) 111 010

(dg,An,Xn) 110 reg. number: An (dg,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number: An (bd,PC,Xn) 111 011

([bd,An,Xn],od) 110 reg. number: An ([bd,PC,Xn],0d) 111 011

([bd,An],Xn,od) 110 reg. number: An ([bd,PC],Xn,0d) 111 011

* Only if <fmt> is Byte, Word, Long or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.

Source Specifier Field — Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register, FPm.
If R/M = 1, specifies the source data format:

000
001
010
011
100
101
110

WOSTXOr

Long Word Integer
Single Precision Real
Extended Precision Real
Packed Decimal Real
Word Integer

Double Precision Real
Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn. If R/M=0
and the source and destination fields are equal, then the input operand is taken from the
specified floating-point data register, and the result is then written into the same register. If
the single register syntax is used, Motorola assemblers will set the source and destination
fields to the same value.

3-53

F I N T R z Integer Part, Round-to-Zero

Operation: Integer Part of Source — FPn

Assembler FINTRZ.<fmt> <ea>,FPn
Syntax: FINTRZ.X FPm,FPn
FINTRZ.X FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

FINTRZ

Description: Convert the source operand to extended precision (if necessary), extract the integer part,
and convert it to an extended precision floating-point number. Store the result in the destination
floating-point data register. The integer part returned is the number that is to the left of the radix
point when the exponent is zero. The integer part is extracted by rounding the extended precision
number to an integer using the round-to-zero mode, regardless of the current rounding mode
selected in the FPCR Control byte (making it useful for FORTRAN assignments). For example, the
integer part of 137.57 is 137.0; the integer part of 0.1245 x 102 is 12.0. Note that the result of this

operation is a floating-point number.

Operation Table:

Source In Range Zero Infinity
Destination + - + - +
Integer, forced . .
Result Round-to-Zero +0.0 -0.0 +inf -inf

Notes: 1. If the source operand is a NAN, refer to 3.4.2.2 for more information.

Status Register:

Condition Codes: Affected as described in 3.4.2.3.1.
Quotient Byte: Not affected.
Exception Byte: BSUN Cleared

SNAN Refer to 3.4.2.2.
OPERR Cleared
OVFL Cleared
UNFL Cleared
DZ Cleared
INEX2 Refer to 4.1.2.7.

INEXA1 If <fmt> is Packed, refer to 4.1.2.8, cleared otherwise.

Accrued Exception Byte: Affected as described in 4.1.2.10.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Coprocessor Effective Address
1 1 1 1 D 0 0 0 Mode | Register
Source Destination
0 |RM[0 Specifier Register 0 0 0 0 0 ! !

3-54

F I N T R Z Integer Part, Round-to-Zero F l N T R Z

Instruction Fields:
Coprocessor 1D Field — Specifies which coprocessor in the system is to execute this instruction.
Motorola assemblers default to ID=1 for the MC68881.

Effective Address Field — Determines the addressing mode for external operands.

If R/M = 0, this field is unused, and should be all zeroes.
If R/M = 1, this field is encoded with an M68000 addressing mode as shown:

Addr. Mode | Mode Register Addr. Mode | Mode Register

Dn* 000 reg. number: Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number: An #<data> 111 100
(An)+ 011 reg. number: An
-(An) 100 reg. number: An

(d16,An) 101 reg. number: An (d16,PC) 111 010

(dg,An,Xn) 110 reg. number: An (dg,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number: An (bd,PC,Xn) 111 011

([bd,An,Xn],od) 110 reg. number: An ([bd,PC,Xn],0d) 111 011

([bd,An],Xn,od) 110 reg. number: An ([bd,PC],Xn,0d) 111 011

* Only it <fmt> is Byte, Word, Long or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.

Source Specifier Field — Specifies the source register or data format.
if R/M = 0, specifies the source floaling-point data register, FPm.
If RM = 1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn. If R/M=0
and the source and destination fields are equal, then the input operand is taken from the
specified floating-point data register, and the result is then written into the same register. |f
the single register syntax is used, Motorola assemblers will set the source and destination
fields to the same value.

3-55

FLOG10 FLOG10

Logqp

Operation: Logqg of Source -> FPn
Assembler FLOG10.<fmt> <ea>FPn
Syntax: FLOG10.X FPm,FPn
FLOG10.X FPn
Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)
Description: Convert the source operand to extended precision (if necessary) and calculate its

logarithm using base 10 arithmetic. Store the result in the destination floating-point data register.
This function is not defined for input values less than zero.

Operation Table:

Destination

Source

+

In Range

Zero

Infinity

Result

Logw

NANT

-inf2

+inf

NAN1

Notes: 1. Sets the OPERR bit in the FPSR exception byte.
2. Sets the DZ bit in the FPSR exception byte.
3. If the source operand is a NAN, refer to 3.4.2.2 for more information.

Status Register:
Condition Codes: Affected as described in 3.4.2.3.1.

Quotient Byte: Not affected.

Exception Byte: BSUN Cleared
SNAN Refer to 3.4.2.2.
OPERR Set if the source operand is < 0, cleared otherwise.
OVFL Cleared
UNFL Cleared
DZ Set if the source is +0, cleared otherwise.
INEX2 Refer to 4.1.2.7.
INEX1 If <fmt> is Packed, refer to 4.1.2.8, cleared otherwise.

Accrued Exception Byte: Affected as described in 4.1.2.10.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 119 Coprocessor | o Effective Address
ID Mode | Register
Source Destination
0 |RM] 0 Specifier Register 0 ! 0 ! 0 !

Instruction Fields:

Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruction.
Motorola assemblers default to ID=1 for the MC68881.

3-56

FLOG10 Log1o FLOG10

Effective Address Field — Determines the addressing mode for external operands.
If R/M = 0, this field is unused, and should be all zeroes.
If R/M = 1, this field is encoded with an M68000 addressing mode as shown:

Addr. Mode | Mode Register Addr. Mode | Mode Register

Dn* 000 reg. number: Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number: An #<data> 111 100
(An)+ 011 reg. number: An
-(An) 100 reg. number: An

(d16,An) 101 reg. number: An (d16,PC) 111 010

(dg,An,Xn) 110 reg. number: An (dg,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number: An (bd,PC,Xn) 111 011

([bd,An,Xn],od) 110 reg. number: An ([bd,PC,Xn],0d) 111 011

([bd,An},Xn,0d) 110 reg. number: An ([bd,PC},Xn,0d) 111 011

* Only if 4mt> is Byte, Word, Long or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.

Source Specifier Field — Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register, FPm.
If R/M = 1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn. If R/M=0
and the source and destination fields are equal, then the input operand is taken from the
specified floating-point data register, and the result is then written into the same register. If
the single register syntax is used, Motorola assemblers will set the source and destination
tields to the same value.

3-57

FLOG2

Logso

FLOG?2

Operation: Log, of Source — FPn
Assembler FLOG2.<fmt> <ea>,FPn
Syntax: FLOG2.X FPm,FPn
FLOG2.X FPn
Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)
Description: Convert the source operand to extended precision (if necessary) and calculate its

logarithm using base 2 arithmetic. Store the result in the destination floating-point data register.

This function is not defined for input values less than zero.

Operation Table:

Source
Destination

In Range

+

Zero

Infinity

Result

Log,

NAN!

-inf2

+inf

NANT

Notes: .1. Sets the OPERR bit in the FPSR exception byte.

2. Sets the DZ bit in the FPSR exception byte.
3. If the source operand is a NAN, refer to 3.4.2.2 for more information.

Status Register:
Condition Codes:

Quotient Byte:

Affected as described in 3.4.2.3.1.

Not affected.

Exception Byte:

Accrued Exception Byte:

Instruction Format:

BSUN Cleared

SNAN Refer to 3.4.2.2.

OPERR Set if the source is < 0, cleared otherwise.

OVFL Cleared

UNFL Cleared

Dz Set if the source is +0, cleared otherwise.

INEX2 Refer to 4.1.2.7.

INEX1 If <fmt> is Packed, refer to 4.1.2.8, cleared otherwise.

Affected as described in 4.1.2.10.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Coprocessor Effective Address
1 1 1 1 D 0 0 0 Mode | Register
Source Destination
0 |RM[0 Specifier Register 0 0 1 0 1 1 0

Instruction Fields:

Coprocessor 1D Field — Specifies which coprocessor in the system is to execute this instruction.
Motorola assemblers default to ID=1 for the MC68881.

3-58

FLOG2 Log, FLOG2

Effective Address Field — Determines the addressing mode for external operands.
If R/M = 0, this field is unused, and should be all zeroes.
If R/M = 1, this field is encoded with an M68000 addressing mode as shown:

Addr. Mode | Mode Register Addr. Mode | Mode Register

Dn* 000 reg. number: Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number: An #<data> 111 100
(An)+ 011 reg. number: An
-(An) 100 reg. number: An

(d16,An) 101 reg. number: An (d16,PC) 111 010

(dg,An,Xn) 110 reg. number: An (dg,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number: An (bd,PC,Xn) 111 011

([bd,An,Xn],od) 110 reg. number: An ([bd,PC,Xn],0d) 111 011

([bd,An],Xn,o0d) 110 reg. number: An ([bd,PC],Xn,0d) 111 011

* Only it <fmt> is Byte, Word, Long or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.

Source Specifier Field — Specifies the source register or data format.
If R’/M = 0, specifies the source floating-point data register, FPm.
If R’M = 1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn. If R/M=0
and the source and destination fields are equal, then the input operand is taken from the
specified floating-point data register, and the result is then written into the same register. If
the single register syntax is used, Motorola assemblers will set the source and destination
fields to the same value.

3-59

FLOGN

FLOGN

Log,e

Operation: Log, of Source — FPn
Assembler FLOGN.<fmt> <ea>,FPn
Syntax: FLOGN.X FPm,FPn
FLOGN.X FPn
Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)
Description: Convert the source operand to extended precision (if necessary) and calculate the natural

logarithm of that number. Store the result in the destination floating-point data register. This

function is not defined for input values less than zero.

Operation Table:

Destination

Source

In Range

- +

Zero

Infinity

Result

In(x)

NANT

-inf2

+inf

NANT

Notes: 1. Sets the OPERR bit in the FPSR exception byte.
2. Sets the DZ bit in the FPSR exception byte.

3. If the source operand is a NAN, refer to 3.4.2.2 for more information.

Status Register:
Condition Codes:

Quotient Byte:

Affected as described in 3.4.2.3.1.

Not affected.

Exception Byte: BSUN Cleared
SNAN Refer to 3.4.2.2.
OPERR Set if the source operand is < 0, cleared otherwise.
OVFL Cleared
UNFL Cleared
DZ Set if the source is +0, cleared otherwise.
INEX2 Refer to 4.1.2.7.
INEX1 If <fmt> is Packed, refer to 4.1.2.8, cleared otherwise.

Accrued Exception Byte:

Instruction Format:

Affected as described in 4.1.2.10.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Coprocessor Effective Address
1T 1 1T D 0o 0 0 Mode | Register
Source Destination
0 [RM] 0 Specifier Register 0 0 ! 0 ! 0 0

Instruction Fields:

Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruction.
Motorola assemblers default to ID=1 for the MC68881.

3-60

FLOGN Log, FLOGN

Effective Address Field — Determines the addressing mode for external operands.
If R/M = 0, this field is unused, and should be all zeroes.
If R/M = 1, this field is encoded with an M68000 addressing mode as shown:

Addr. Mode | Mode Register Addr. Mode | Mode Register

Dn* 000 reg. number: Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number: An #<data> 111 100
(An)+ 011 reg. number: An
-(An) 100 reg. number: An

(d16,An) 101 reg. number: An (d16,PC) 111 010

(dg,An,Xn) 110 reg. number: An (dg,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number: An (bd,PC,Xn) 111 011

([bd,An,Xn},0d) 110 reg. number: An ([bd,PC,Xn],0d) 111 011

([bd,An],Xn,od) 110 reg. number: An ([bd,PC],Xn,od) 111 011

* Only if <mt> is Byte, Word, Long or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.

Source Specifier Field — Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register, FPm.
If R’M = 1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn. If R/M=0
and the source and destination fields are equal, then the input operand is taken from the
specified floating-point data register, and the result is then written into the same register. If
the single register syntax is used, Motorola assemblers will set the source and destination
fields to the same value.

3-61

FLOGNP1

FLOGNP1

Loge(x+1)

Operation: Log of (Source + 1) - FPn

Assembler FLOGNP1.<fmt> <ea>,FPn

Syntax: FLOGNP1.X FPm,FPn

FLOGNP1.X FPn
Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)
3
- Description: Convert the source operand to extended precision (if necessary), add 1 to that value, and

calculate the natural logarithm of the intermediate result. Store the final result in the destination
floating-point data register. This function is not defined for input values less than -1.

Operation Table:

Source
Destination

Zero

+

In Range

+

+

Infinity

Result

In(x+1)

In(x+1)1

+0.0

-0.0

+inf

NAN 2

Notes: 1. If the source is -1, sets the DZ bit in the FPSR exception byte and returns a NAN. If the
source is < -1, sets the OPERR bit in the FPSR exception byte and returns a NAN.

2. Sets the OPERR bit in the FPSR exception byte.
3. If the source operand is a NAN, refer to 3.4.2.2 for more information.

Status Register:
Condition Codes:

Quotient Byte:

Affected as described in 3.4.2.3.1.

Not affected.

BSUN
SNAN
OPERR
OVFL
UNFL
Dz
INEX2
INEX1

Exception Byte:

Accrued Exception Byte:

Instruction Format:

Cleared

Refer to 3.4.2.2.

Set if the source operand is < -1, cleared otherwise.
Cleared

Refer to 4.1.2.5.

Set if the source operand is -1, cleared otherwise.
Refer to 4.1.2.7.

If <fmt> is Packed, refer to 4.1.2.8, cleared otherwise.

Affected as described in 4.1.2.10.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Coprocessor Effective Address
! ! ! ! D 0 0 0 Mode | Register
Source Destination
0 |RM] 0O Specifier Register 0 0 0 0 ! ! 0

Instruction Fields:

Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruction.
Motorola assemblers default to ID=1 for the MC68881.

3-62

FLOGNP1 Logatxs1) FLOGNP1

Effective Address Field — Determines the addressing mode for external operands.
If R/M = 0, this field is unused, and should be all zeroes.
If R/M = 1, this field is encoded with an M68000 addressing mode as shown:

Addr. Mode | Mode Register Addr. Mode | Mode Register
Dn* 000 reg. number: Dn (xxx).W 111 000
An — — (xxx).L 111 001
(An) 010 reg. number: An #<data> 111 100
(An)+ 011 reg. number: An
-(An) 100 reg. number: An
(d16,An) 101 reg. number: An (d16,PC) 111 010
(dg,An,Xn) 110 reg. number: An (dg,PC,Xn) 111 011
(bd,An,Xn) 110 reg. number: An (bd,PC,Xn) 111 011
([bd,An,Xn],od) 110 reg. number: An ([bd,PC,Xn],0d) 111 011
([bd,An],Xn,od) 110 reg. number: An ([bd,PC],Xn,0d) 111 011

* Only if <fmt> is Byte, Word, Long or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.

Source Specifier Field — Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register, FPm.
If R'M = 1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn. If R/M=0
and the source and destination fields are equal, then the input operand is taken from the
specified floating-point data register, and the result is then written into the same register. |f
the single register syntax is used, Motorola assemblers will set the source and destination
fields to the same value.

3-63

FMOD

Operation:

Assembler
Syntax:

Attributes:

Description:

FMOD

Modulo Remainder

Modulo remainder of (FPn + Source) — FPn

FMOD.<fmt>
FMOD.X

<ea>,FPn
FPm,FPn

Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Convert the source operand to extended precision (if necessary) and calculate the

modulo remainder of the destination floating-point data register, using the source value as the

modulus.

The result is stored in the destination floating-point data register, and the seven least

significant quotient bits and the sign of the quotient are stored in the FPSR quotient byte (where
the quotient is the result of FPn + Source). The modulo remainder function is defined as:

FPn — (Source x N)

where N = INT(FPn + Source) in the round-to-zero mode

The FMOD function is not defined for a source operand equal to zero or for a destination operand
equal to infinity. Note that this function is not the same as the FREM instruction, which uses the
round-to-nearest mode and thus returns the remainder that is required by the /EEE Specification for
Binary Floating-Point Arithmetic.

Operation Table:

Source In Range Zero Infinity
Destination + -
In Range Modulo Remainder NAN1 FPn 2
2 +0.0 1 +0.0
ero) 0.0 NAN 0.0
Infinity NAN 1 NAN 1 NAN !

Notes: 1. Sets the OPERR bit in the FPSR exception byte.

2. Returns the value of FPn before the operation. However, the result will be processed by

the normal instruction termination procedure to round it as required. Thus, an underflow
and/or inexact result may occur if the rounding precision has been changed to a smaller
size since the FPn value was last loaded.

3. If either operand is a NAN, refer to 3.4.2.2 for more information.

Status Register:

Condition Codes:

Quotient Byte:

Affected as described in 3.4.2.3.1.
Loaded with the sign and least significant seven bits of the quotient

(FPn + Source). The sign of the quotient is the exclusive OR of the
sign bits of the source and destination operands.

3-64

F M O D Modulo Remainder F M O D

Exception Byte: BSUN Cleared
SNAN Refer to 3.4.2.2.
OPERR Set if the souce is zero, or the destination is infinity; cleared
otherwise.
OVFL Cleared
UNFL Refer to 4.1.2.5.
Dz Cleared
INEX2 Refer to 4.1.2.7.
INEX1 If <fmt> is Packed, refer to 4.1.2.8, cleared otherwise.

Accrued Exception Byte: Affected as described in 4.1.2.10.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Coprocessor Effective Address
! ! v D o o o Mode | Register
Source Destination
0 [RM| 0 Specifier Register 0 1 0 0 0 0 1

Instruction Fields:

Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruction.

Motorola assemblers default to ID=1 for the MC68881.

Effective Address Field — Determines the addressing mode for external operands.
If R/M = 0, this field is unused, and should be all zeroes.
If R/M = 1, this field is encoded with an M68000 addressing mode as shown:

Addr. Mode | Mode Register Addr. Mode | Mode Register

Dn* 000 reg. number: Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number: An #<data> 111 100
(An)+ 011 reg. number: An
-(An) 100 reg. number: An

(d16,An) 101 reg. number: An (d16,PC) 111 010

(dg,An,Xn) 110 reg. number: An (dg,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number: An (bd,PC,Xn) 111 011

([bd,An,Xn},od) 110 reg. number: An ([bd,PC,Xn],0d) 111 011

([bd,An],Xn,od) 110 reg. number: An ([bd,PC],Xn,0d) 111 011

* Only if <fmt> is Byte, Word, Long or Single.
R/M Field — Specifies the source operand address mode.

0 — The operation is register to register.
1 — The operation is <ea> to register.

3-65

F M O D Modulo Remainder F M O D

Source Specifier Field — Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register, FPm.
If R’M = 1, specifies the source data format:

000 L Long Word integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn.

3-66

F M O V E Move Floating-Point Data Register F M O V E

Operation: Source — Destination

Assembler FMOVE.<fmt> <ea>,FPn

Syntax: FMOVE.<fmt> FPm,<ea>
FMOVE.P FPm,<ea>{Dn}
FMOVE.P FPm,<ea>{#k}

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Description: Move the contents of the source operand to the destination operand. Although the
primary function of this intruction is data movement, it is also considered an arithmetic insruction,
since conversions from the source operand format to the destination operand format are performed
implicitly during the move operation. Also, the source operand will be rounded according to the
selected rounding precision and mode.

Unlike the M68000 Family integer data movement instruction, the floating-point move instruction
does not support a memory-to-memory format (for such transfers, it is much faster to utilize the
M68000 Family integer MOVE instruction to transfer the floating-point data than to use the FMOVE
instruction). The FMOVE instruction only supports memory-to-register, register-to-register, and
register-to-memory operations (in this context, "memory" may refer to an MC68020 data register if
the data format is byte, word, long or single). In fact, these two operations use distinctly different
command word encodings, and are described separately below.

Memory-to-Register Operation:
The source operand is converted to an extended precision floating-point number (if necessary) and
stored in the destination floating-point data register. Depending on the source data format and the
rounding precision, some operations may produce an inexact result. In the following table, combi -
nations that can produce an inexact result are marked with a dot (+), while all other combinations will
produce an exact result.

Source Format: B w L S D X P
Rounding Single
Precision: Double . .
Extended .
Status Register:
Condition Codes: Affected as described in 3.4.2.3.1.
Quotient Byte: Not affected.
Exception Byte: BSUN Cleared

SNAN Refer to 3.4.2.2.

OPERR Cleared

OVFL Cleared

UNFL Refer to 4.1.2.5 if the source is an extended precision
denormalized number, cleared otherwise.

Dz Cleared

INEX2 Referto 4.1.2.7 if <fmt> is L, D or X, cleared otherwise.

INEX1 Refer to 4.1.2.8 if <fmt> is P; cleared otherwise.

3-67

F M 0 V E Move Floating-Point Data Register F M O V E

Accrued Exception Byte: Affected as described in 4.1.2.10.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Coprocessor Effective Address
! ! 1 ID 0 0 0 Mode | Register
Source Destination
0 |RM[O Specifier Register 0 0 0 0 0 0 0

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruction.
Motorola assemblers default to ID=1 for the MC68881.

Effective Address Field — Determines the addressing mode for external operands.
If R/M = 0, this field is unused, and should be all zeroes.
If R/M = 1, this field is encoded with an M68000 addressing mode as shown:

Addr. Mode | Mode Register Addr. Mode | Mode Register

Dn* 000 reg. number: Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number: An #<data> 111 100
(An)+ 011 reg. number: An
-(An) 100 reg. number: An

(d16,An) 101 reg. number: An (d16,PC) 111 010

(dg,An,Xn) 110 reg. number: An (dg,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number; An (bd,PC,Xn) 111 011

([bd,An,Xn],0d) 110 reg. number: An ([bd,PC,Xn],0d) 111 011

([bd,An],Xn,od) 110 reg. number: An ([bd,PC],Xn,od) 111 011

* Only if <fmt> is Byte, Word, Long or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.

Source Specifier Field — Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register, FPm.
If R/M = 1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn.

3-68

FMOVE

Move Floating-Point Data Register

Register-to-Memory Operation:

FMOVE

The source operand is rounded, if necessary, to the specified size and stored at the destination
effective address. If the format of the destination is packed decimal, then a third operand is required
to specify the format of the resultant string. This operand, called the k-factor, is a 7-bit signed
integer (twos complement) and may be specified as an immediate value or in a main processor data
register. If a data register contains the k-factor, only the least significant 7-bits are used, and the rest

of the register is ignored.

Status Register:

Condition Codes:
Quotient Byte:

Exception Byte:
<fmt> is B, Wor L

<fmt>is S, D or X

<fmt> is P

Accrued Exception Byte: Affected as described in 4.1.2.10.

Not affected.

Not affected.

BSUN
SNAN
OPERR

OVFL
UNFL
DZ

INEX2
INEX1

BSUN
SNAN
OPERR
OVFL
UNFL
Dz
INEX2
INEX1

BSUN
SNAN
OPERR

OVFL
UNFL
Dz

INEX2
INEX1

Cleared
Refer to 3.4.2.2.

Set if the source operand is infinity, or if the destination size is
exceeded after conversion and rounding. Cleared otherwise.

Cleared
Cleared
Cleared
Refer to 4.1.2.7.
Cleared

Cleared

Refer to 3.4.2.2.
Cleared
Refer to 4.1
Refer to 4.1
Cleared
Refer to 4.1.2.7.
Cleared

.2.4.
.2.5.

Cleared
Refer to 3.4.2.2.

Set if the k-factor > +17, or the magnitude of the decimal
exponent exceeds 3 digits. Cleared otherwise.

Cleared
Cleared
Cleared
Refer to 4.1.2.7.
Cleared

3-69

F M O V E Move Floating-Point Data Register F M 0 V E

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Coprocessor Effective Address
LA D 0 0 0 Mode | Register
Destination Source . .
0 1 1 Format Register k-factor (if required)

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruction.
Motorola assemblers default to ID=1 for the MC68881.

Effective Address Field — Encoded with the M68000 addressing mode for the destination
operand as shown:

Addr. Mode | Mode Register Addr. Mode | Mode Register

Dn* 000 reg. number: Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number: An #<data> — —
(An)+ 011 reg. number: An
-(An) 100 reg. number: An

(d16,An) 101 reg. number: An (d16,.PC) — —

(dg,An,Xn) 110 reg. number: An (dg,PC,Xn) — —

(bd,An,Xn) 110 reg. number: An (bd,PC,Xn) — —

([bd,An,Xn],0d) 110 reg. number: An ([bd,PC,Xn],od) — —

([bd,An],Xn,od) 110 reg. number: An ([bd,PC],Xn,od) — —

* Only if <fmt> is Byte, Word, Long or Single.

Destination Format Field — Specifies the data format of the destination operand:

000 L Long Word Integer

001 S Single Precision Real

010 X Extended Precision Real

011 P {#k} Packed Decimal Real with static k-factor

100 W Word Integer

101 D Double Precision Real

110 B Byte Integer

111 P {Dn} Packed Decimal Real with dynamic k-factor

Source Register Field — Specifies the source floating-point data register, FPm.

k-factor Field — Only used if the destination format is Packed Decimal, to specify the format of the
decimal string. For any other destination format, this field should be set to all zeroes. For a
static k-factor, this field is encoded with a twos complement integer where the value defines
the format as follows:

3-70

F M O V E Move Floating-Point Data Register F M o V E

-64t0 0 — Indicates the number of significant digits to the right of the decimal point
(Fortran "F" format).
+11to +17 — Indicates the number of significant digits in the mantissa (Fortran "E" format).

+18 1o +63 — Sets the OPERR bit in the FPSR exception byte, treated as +17.
The format of this field for a dynamic k-factor is:
rrr0000
Where "rrr" is the number of the main processor data register that contains the k-factor value.
The following table gives several examples of how the k-factor value affects the format of the

decimal string that is produced by the MC68881. The format of the string that is generated is
independent of the source of the k-factor (static or dynamic).

k-factor Source QOperand Value Destination String

-5 +12345.678765 +1.234567877 E+4
-3 +12345.678765 +1.2345679 E+4
-1 +12345.678765 +1.23457 E+4

0 +12345.678765 +1.2346 E+4
+1 +12345.678765 +1. E+4
+3 +12345.678765 +1.23 E+4
+5 +12345.678765 +1.2346 E+4

3-71

FMOVE

Operation: Source — Destination
Assembler FMOVE.L <ea>,FPcr
Syntax: FMOVE.L FPcr,<ea>
Attributes: Size = (Long)
Description:

Move System Control Register

FMOVE

Move the contents of a floating-point system control register into or out of the MC68881

(the control registers are the FPCR, FPSR and FPIAR). The external register image may be located
in memory or an MC68020 register. A 32-bit transfer is always performed, even though the system
control register may not have 32 implemented bits. Unimplemented bits of a control register are
read as zeros and are ignored during writes (but must be zero for compatability with future devices).

This instruction will not cause a pending exception to be reported to the main processor. Further -
more, a write to the FPCR exception enable byte or the FPSR exception status byte will not
generate a new exception, regardless of the value written.

Status Register: Will be changed only if the destination is the FPSR; in which case all bits will be

modified to reflect the value of the source operand.

Instruction Format:

15 14 13 12 11 10 9 8 6 5 4 3 2 1 0
1 1 1 1 Coprocessor 0 0 Effective Address
ID Mode | Register
Register
1 0 | dr Select 0 0 0 0 0 0 0 0 0

Instruction Fields:

Coprocessor |D Field — Specifies which coprocessor in the system is to execute this instruction.
Motorola assemblers default to ID=1 for the MC68881.

Effective Address Field — Determines the addressing mode for the operation:

Memory-to-Register —

Addr. Mode | Mode Register Addr. Mode | Mode Register

Dn 000 reg. number: Dn (xxx).W 111 000

An* 001 reg. number: An (xxx).L 111 001

(An) 010 reg. number: An #<data> 111 100
(An)+ 011 reg. number: An
-(An) 100 reg. number: An

(d16,An) 101 reg. number: An (d16PC) 111 010

(dg,An,Xn) 110 reg. number: An (dg,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number: An (bd,PC,Xn) 11 011

([bd,An,Xn],od) 110 reg. number: An ([bd,PC,Xn],0d) 111 011

([bd,An],Xn,od) 110 reg. number: An ([bd,PC],Xn,0d) 11 011

* Only if the source register is the FPIAR.

3-72

FMOVE

Register-to-Memory —

Move System Control Register

FMOVE

Addr. Mode | Mode Register Addr. Mode | Mode Register

Dn 000 reg. number: Dn (xxx).W 111 000

An* 001 reg. number: An (xxx).L 111 001

(An) 010 reg. number: An #<data> — —
(An)+ 011 reg. number: An
-(An) 100 reg. number: An

(d16,An) 101 reg. number: An (d16,PC) —_ —

(dg,An,Xn) 110 reg. number: An (dg,PC,Xn) — —

(bd,An,Xn) 110 reg. number: An (bd,PC,Xn) — —_

([bd,An,Xn],0d) 110 reg. number: An ([bd,PC,Xn],od) — —

([bd,An},Xn,od) 110 reg. number: An ([bd,PC],Xn,od) — —

* Only if the destination register is the FPIAR.

dr Field — Specifies the direction of the data transfer.
0 — Move an external operand to the specified system control register.
1 — Move the specified system control register to an external location.

Register Select Field — Specifies the system control register to be moved:

100 FPCR Floating-point Control Register
010 FPSR Floating-point Status Register
001 FPIAR Floating-point Instruction Address Register

3-73

FMOVECR Move Constant ROM FMOVECR

Operation: ROM Constant — FPn

Assembler FMOVECR.X #ccc,FPn
Syntax:

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Description: Move an extended precision constant from the MC68881 on-chip ROM, round it to the
precision specified by the FPCR, and store it in the destination floating-point data register. A
constant value is specified by a predefined offset into the constant ROM. The constants contained
in the ROM are shown in the table below.

Status Register:

Condition Codes: Affected as described in 3.4.2.3.1.
Quotient Byte: Not affected.
Exception Byte: BSUN Cleared

SNAN Cleared
OPERR Cleared
OVFL Cleared
UNFL Cleared
Dz Cleared
INEX2 Refer to 4.1.2.7.
INEX1 Cleared

Accrued Exception Byte: Affected as described in 4.1.2.10.

Instruction Format:
i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1111C°p“;gess°’ooooooooo

Destination

0 ! 0 ! ! ! Register

ROM offset

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruction.
Motorola assemblers default to ID=1 for the MC68881.
Destination Register Field — Specifies the destination floating-point data register, FPn.

ROM offset Field — Specifies the offset into the MC68881 on-chip constant ROM where the
desired constant is located. The offsets for the available constants are:

3-74

FMOVECR Move Constant ROM FMOVECR

Logqo(e)
BOF e 0.0

Other constants are contained in the on-chip ROM, but are useful only to the on-chip microcode
routines. The values contained at offsets other than those defined above are reserved for the use
of Motorola, and may be different on various mask sets of the MC68881.

3-75

F M O V E M Move Multiple Data Registers F M O V E M

Operation: Register List — Destination
Source — Register List

Assembler FMOVEM.X <list>,<ea>

Syntax: FMOVEM.X Dn,<ea>
FMOVEM.X <ea>,<list>
FMOVEM.X <ea>,Dn

<list> A list of any combination of the eight floating-point data registers, with individual
register names separated by a slash, "/"; and/or contiguous blocks of registers
specified by the first and last register names separated by a dash, "-".

Attributes: Format = (Extended)

Description: Move one or more extended precision values to or from a list of floating-point data
registers. No conversion or rounding is performed during this operation, and the FPSR is not
affected by the instruction. This instruction will not cause a pending exception to be reported to the
main processor.

Any combination of the eight floating-point data registers may be transferred, with the selected
registers specified by a user-supplied mask. This mask is an 8-bit number, where each bit
corresponds to one register; if a bit is set in the mask, that register will be moved. The register select
mask may be specified as a static value contained in the instruction, or a dynamic value in the least
significant 8-bits of an MC68020 data register (the upper 24-bits of the register are ignored).

FMOVEM allows three types of addressing modes: the control modes, the predecrement mode, or
the postincrement mode. |f the effective address is one of the control addressing modes, the
registers are transferred between the MC68881 and memory starting at the specified address and
up through higher addresses. The order of the transfer is from FP0 through FP7.

If the effective address is the predecrement mode, only a register to memory operation is allowed.
The registers are stored starting at the address contained in the address register and down through
lower addresses. Before each register is stored, the address register is decremented by 12 (the
size of an extended precision number in memory) and the floating-point data register is then stored
at the resultant address. When the operation is complete, the address register points to the image
of the last floating-point data register stored. Each register is stored in the format described in
section 2.2 Operand Data Types and Formats, such that the most significant byte of the
register image is stored at the lowest address, and the least significant byte at the highest address.
The order of the transfer is from FP7 through FPO.

If the effective address is the postincrement mode, only a memory to register operation is allowed.
The registers are loaded starting at the specified address and up through higher addresses. After
each register is stored, the address register is incremented by 12 (the size of an extended precision
number in memory). When the operation is complete, the address register points to the byte imme-
diately following the image of the last floating-point data register loaded. The order of the transfer is
the same as for the control addressing modes, FPO through FP7.

Status Register:
Not Affected. Note that the FMOVEM instruction provides the only mechanism for moving a
floating-pointdata item between the MC68881 and memory without performing any data conver-
sions or affecting the condition code and exception status bits.

3-76

F M 0 V E M Move Multiple Data Registers F M O V E M

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Coprocessor Effective Address
11 11 D o 0 o0 Mode | Register
1 1 dr Mode 0 0 0 Register List

Instruction Fields:

Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruction.

Motorola assemblers default to ID=1 for the MC68881.
Effective Address Field — Determines the addressing mode for the operation:

Memory-to-Register —

Addr. Mode | Mode Register Addr. Mode | Mode Register
Dn — — (xxx).W 111 000
An — —_ (xxx).L 111 001
(An) 010 reg. number: An #<data> — —
(An)+ 011 reg. number: An
.(An) j— .

(d16,An) 101 reg. number: An (d16,PC) 111 010
(dg,An,Xn) 110 reg. number: An (dg,PC,Xn) 111 011
(bd,An,Xn) 110 reg. number: An (bd,PC,Xn) 111 011

([bd,An,Xn],0d) 110 reg. number: An ([bd,PC,Xn],0d) 111 011
([bd,An],Xn,od) 110 reg. number: An ([bd,PC],Xn,0d) 111 011

Register-to-Memory —

Addr. Mode | Mode Register Addr. Mode | Mode Register

Dn — — (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number: An #<data> — —

(An)+ — —

-(An) 100 reg. number: An

(d1g,An) 101 reg. number: An (d16,PC) — —

(dg,An,Xn) 110 reg. number: An (dg,PC,Xn) — —

(bd,An,Xn) 110 reg. number: An (bd,PC,Xn) — —

([bd,An,Xn],od) 110 reg. number: An ([bd,PC,Xn],0d) — —

([bd,An],Xn,od) 110 reg. number: An ([bd,PC],Xn,0d) — —

dr Field — Specifies the direction of the transfer.
0 — Move the listed registers from memory to the MC68881.
1 — Move the listed registers from the MC68881 to memory.

3-77

F M 0 V E M Move Multiple Data Registers F M O V E M

Mode Field — Specifies the type of the register list and addressing mode.
00 — Static register list, predecrement addressing mode.
01 — Dynamic register list, predecrement addressing mode.
10 — Static register list, postincrement or control addressing mode.
11 — Dynamic register list, postincrement or control addressing mode.

Register List Field:

Static list — contains the register select mask; if a register is to be moved, the correspon -
ding bit in the mask is set, otherwise it is clear.
Dynamic list — contains the main processor data register number, rrr, as shown below.

Register List Format

Static, -(An) — FP7 FP6 FP5 FP4 FP3 FP2 FP1 FPO
Static, (An)+ or Control — FPO FP1 FP2 FP3 FP4 FP5 FP6 FP7
Dynamic — 0 r r r 0 0 0 0

The format of the dynamic list mask is the same as for the static list, and is contained in the
least significant 8-bits of the specified MC68020 data register.

Programming Note: This instruction provides a very useful feature, dynamic register list specification,
that can significantly enhance system performance. If the calling conventions used for procedure
calls utilize the dynamic register list feature, the number of floating-point data registers saved and
restored can be reduced. Since a save or restore of a floating-point data register requires at least 6
bus cycles (more if the memory address is not long word aligned), then if a register does not need to
be saved and restored, a minimum of 36 clock cycles will be eliminated from the procedure call and
return overhead for each register not saved unnecessarily.

In order to utilize the dynamic register selection feature of the FMOVEM instruction, both the calling
and the called procedures must be written to communicate information about register usage. When
one procedure calls another procedure, a register mask should be passed to the called procedure
that indicates which registers must not be altered upon return to the calling procedure. The called
procedure can then save only those registers that will be modified and are already in use. There are
several techniques that can be used to utilize this mechanism, and an example is given below.

In this example, a convention is defined where each called procedure is passed a word mask in D7
which identifies all floating-point registers in use by the calling procedure. Bits 15 though 8 identify
the registers in the order FPO through FP7, while bits 7 through 0 identify the registers in the order
FP7 through FPO (the two masks are required due to the different transfer order used by the pre -
decrement and postincrement addressing modes). The code used by the calling procedure
consists of simply moving the mask (which is generated at compile time) for the floating-point data
registers currently in use into D7:

Calling procedure...
MOVE.W #ACTIVE_NOW,D7 Load the list of FP registers that are in use
BSR PROC_2

The entry code for all other procedures computes two masks. The first mask identifies the regislers
in use by the calling procedure that will be used by the called procedure (and therefore saved and
restored by the called procedure). The second mask identifies the registers in use by the calling
procedure that will not be used by the called procedure (and therefore not saved on entry). The

appropriate registers are then stored along with the two masks:

3-78

F M O V E M Move Multiple Data Registers F M O V E M

Called procedure...

MOVE.W D7,D6 Copy the list of active registers

AND.W #WILL_USE,D7 Generate the list of doubly-used registers
FMOVEM D7,-(A7) Save those registers

MOVE.W D7,-(A7) Save the register list

EOR.W D7,D6 Generate the list of not saved active registers

MOVE.W D6,NOT_SAVED(A7) Save it for later use

It the second procedure must call a third procedure, a register mask must be passed to the third
procedure that will indicate which registers must not be altered by the third procedure. This mask

must identify any registers in the list from the first procedure that were not saved by the second

procedure, plus any registers used by the second procedure that must not be altered by the third

procedure. An example of the calculation of this mask is:

Nested calling sequence...
MOVE.W NOT_SAVED(A7),D7 Load the list of active registers not saved at entry
OR.W #ACTIVE_NOW,D7 Combine with those active at this time
BSR PROC_3

Upon return from a procedure, the restoration of the necessary registers follows the same
convention, and the register mask generated during the save operation on entry can be used to
restore the required floating-point data registers:

Return to caller...

MOVE.B (A7)+,D7 Get the register list (pop a word, use high byte)
FMOVEM (A7)+,D7 Restore the registers
RTS Return to the calling routine

3-79

F M O V E M Move Multiple Control Registers F M O V E M

Operation: Register List — Destination
Source — Register List

Assembler FMOVEM.L <list>,<ea>
Syntax: FMOVEM.L <ea>«list>

<list> A list of any combination of the three floating-point system control registers (FPCR,
FPSR and FPIAR), with individual register names separated by a slash, "/".

Attributes: Size = (Long)

Description: Move one or more 32-bit values into or out of the specified system control registers. Any
combination of the three system control registers may be selected. The registers are always moved
in the same order, regardless of the addressing mode used; with the FPCR moved first, followed by
the FPSR, and the FPIAR moved last (if a register is not selected for the transfer, the relative order of
the transfer of the other registers is the same). The first register is transferred between the
MC68881 and the specified address, with successive registers located up through higher
addresses.

When more than one register is moved, the memory or memory alterable addressing modes are
allowed as shown below. If the addressing mode is predecrement, the address register is first
decremented by the total size of the register images to be moved (ie, 4 times the number of
registers) and then the registers are transferred starting at the resultant address. For the
postincrement addressing mode, the selected registers are transferred to or from the specified
address, and then the address register is incremented by the total size of the register images that
were transferred. If a single system control register is selected, the data register direct addressing
mode may be used; or, if the selected register is the FPIAR, then the address register direct
addressing mode may be used. Note that if a single register is selected, the opcode generated is
the same as for the FMOVE single system control register instruction.

Status Register: Will be changed only if the destination list includes the FPSR; in which case all bits
will be modified to reflect the value of the source register image.

Instruction Format:
i 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Coprocessor Effective Address
1 1 1 1 D 0 0 0 Mode | Register
Register
1 0 | dr List 0 0 0 0 0 0 0 0 0 0

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruction.
Motorola assemblers default to ID=1 for the MC68881.

3-80

F M O V E M Move Muiltiple Control Registers F M O V E M

Effective Address Field — Determines the addressing mode for the operation:

Memory-to-Register —

Addr. Mode | Mode Register Addr. Mode | Mode Register
Dn* 000 reg. number: Dn (xxx).W 111 000
An** 001 reg. number: An (xxx).L 111 001
(An) 010 reg. number: An #<data> 111 100
(An)+ 011 reg. number: An
-(An) 100 reg. number: An
(d16,An) 101 reg. number: An (d16,PC) 111 010
(dg,An,Xn) 110 reg. number: An (dg,PC,Xn) 111 011
(bd,An,Xn) 110 reg. number: An (bd,PC,Xn) 111 011
([bd,An,Xn],od) 110 reg. number: An ([bd,PC,Xn],0d) 111 011
([bd,An],Xn,od) 110 reg. number: An ([bd,PC],Xn,od) 111 011

*

Only if a single FPcr is selected.
Only if the FPIAR is the single register selected.

e

Register-to-Memory —

Addr. Mode | Mode Register Addr. Mode | Mode Register

Dn* 000 reg. number: Dn (xxx).W 111 000

An** 001 reg. number: An (xxx).L 111 001

(An) 010 reg. number: An #<data> — —
(An)+ 011 reg. number: An
-(An) 100 reg. number: An

(d{6,An) 101 reg. number: An (d16,PC) —_ —

(dg,An,Xn) 110 reg. number: An (dg,PC,Xn) — —

(bd,An,Xn) 110 reg. number: An (bd,PC,Xn) — —

([bd,An,Xn],0d) 110 reg. number: An ([bd,PC,Xn],0d) — —

([bd,An],Xn,od) 110 reg. number: An ([bd,PC],Xn,od) — —

-

Only if a single FPcr is selected.
** Only if the FPIAR is the single register selected.

dr Field — Specifies the direction of the transfer.

0 — Move the listed registers from memory to the MC68881.
1 — Move the listed registers from the MC68881 to memory.

Register List Field: — Contains the register select mask; if a register is to be moved, the corresponding bit
in the list is set, otherwise it is clear.

Bit Number — 12 11 10
Register — FPCR FPSR FPIAR

3-81

FMU

L

Multiply

FMUL

Operation: Source x FPn — FPn

Assembler FMUL.<fmt> <ea>,FPn

Syntax: FMUL.X FPm,FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Description: Convert the source operand to extended precision (if necessary) and multiply that

number by the value in the destination floating-point data register.

Store the result in the

destination floating-point data register.

Operation Table:

Source In Range Zero Infinity
Destination + + + .

. +0.0 -0.0 +inf -int
In Range) Muttiply -0.0 +0.0 | -inf +inf

Zero +] +0.0 -0.0 +0.0 -0.0 NANT

-0.0 +0.0 -0.0 +0.0

» +inf -int +inf -inf
Infinity -inf +in NANT -inf +in

Notes: 1. Sets the OPERR bit in the FPSR exception byte.

2. If the source operand is a NAN, refer to 3.4.2.2 for more information.

Status Register:
Condition Codes:

Quotient Byte:

Exception Byte:

Accrued Exception Byte:

Instruction Format:

Affected as described in 3.4.2.3.1.

Not affected.

BSUN Cleared

SNAN Refer to 3.4.2.2.

OPERR Set for 0 x infinty, cleared otherwise.

OVFL Refer to 4.1.2.4.

UNFL Refer t0 4.1.2.5.

Dz Cleared

INEX2 Refer to 4.1.2.7.

INEX1 If <fmt> is Packed, refer to 4.1.2.8, cleared otherwise.

Affected as described in 4.1.2.10.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Coprocessor Effective Address
1 1 1 1 D 0 0 0 | Register
Source Destination
0 [RM[O Specifier Register 0 ! u 0 0 ! !

3-82

FMUL Multipty FMUL

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruction.
Motorola assemblers default to ID=1 for the MC68881.

Effective Address Field — Determines the addressing mode for external operands.
If R/M = 0, this field is unused, and should be all zeroes.
If R/M = 1, this field is encoded with an M68000 addressing mode as shown:

Addr. Mode | Mode Register Addr. Mode | Mode Register

Dn* 000 reg. number: Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number: An #<data> 111 100
(An)+ 011 reg. number: An
-(An) 100 reg. number: An

(d16,An) 101 reg. number: An (d16.PC) 111 010

(dg,An,Xn) 110 reg. number: An (dg,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number: An (bd,PC,Xn) 111 011

([bd,An,Xn],od) 110 reg. number: An ([bd,PC,Xn],0d) 111 011

([bd,An],Xn,od) 110 reg. number: An ([bd,PC],Xn,0d) 111 011

* Only if <fmt> is Byte, Word, Long or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.

Source Specifier Field — Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register, FPm.
If R/M = 1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn.

3-83

FNEG

FNEG

Negate

Operation: -(Source) — FPn
Assembler FNEG.<fmt> <ea>,FPn
Syntax: FNEG.X FPm,FPn
FNEG.X FPn
Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)
Description: Convert the source operand to extended precision (if necessary), invert the sign of the

mantissa, and store the result in the destination floating-point data register.

Operation Table:

Destination

Source

In Range Zero Infinity

+ - + - + -

Result

Negate -0.0 +0.0 -inf +inf

Notes: 1. If the source operand is a NAN, refer to 3.4.2.2 for more information.

Status Register:
Condition Codes:

Quotient Byte:

Affected as described in 3.4.2.3.1.

Not affected.

Exception Byte: BSUN Cleared
SNAN Refer to 3.4.2.2.
OPERR Cleared
OVFL Cleared
UNFL If source is an extended precision denormalized number, refer
to 4.1.2.5; cleared otherwise.
Dz Cleared
INEX2 Cleared
INEX1 If <fmt> is Packed, refer to 4.1.2.8, cleared otherwise.

Accrued Exception Byte:

Instruction Format:

Affected as described in 4.1.2.10.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Coprocessor Effective Address
! ! ! ! ID 0 0 0 Mode | Register
Source Destination
0 [RM[0 Specifier Register 0 0 ! ! 0 ! 0

Instruction Fields:

Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruction.
Motorola assemblers default to ID=1 for the MC68881.

3-84

FNEG Negate FNEG

Effective Address Field — Determines the addressing mode for external operands.
If R'M = 0, this field is unused, and should be all zeroes.
If R/M = 1, this field is encoded with an M68000 addressing mode as shown:

Addr. Mode | Mode Reglister Addr. Mode | Mode Register

Dn* 000 reg. number: Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number: An #<data> 111 100
(An)+ 011 reg. number: An
-(An) 100 reg. number: An

(d16.,An) 101 reg. number: An (d16,PC) 111 010

(dg,An,Xn) 110 reg. number: An (dg,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number: An (bd,PC,Xn) 111 011

([bd,An,Xn],od) 110 reg. number: An ([bd,PC,Xn],0d) 111 011

([bd,An},Xn,od) 110 reg. number: An ({bd,PC],Xn,0d) 111 011

* Only if <mt> is Byte, Word, Long or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.

Source Specifier Field — Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register, FPm.
If R/M = 1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn. If R/IM=0
and the source and destination fields are equal, then the input operand is taken from the
specified floating-point data register, and the result is then written into the same register. If
the single register syntax is used, Motorola assemblers will set the source and destination
fields to the same value.

3-85

F N O P No Operation F N O P

Operation: None

Assembler FNOP
Syntax:

Attributes: Unsized

Description: This instruction does not perform any explicit operation. It is useful, however, to force
synchronization of the MC68881 with a main processor, or to force processing of pending
exceptions. The syncronization function is inherent in the way that the MC68881 uses the M68000
Family Coprocessor Interface. For most MC68881 instructions, the main processor is allowed to
continue with the execution of the next instruction once the MC68881 has any operands needed
for an operation; thus supporting concurrent execution of floating-point and integer instructions.
However, if the main processor attempts to initiate the execution of a new instruction in the
MC68881 before the previous one is completed, then the main processor will be forced to wait until
that instruction execution is done before proceeding with the new instruction. FNOP is treated in
the same way as other instructions, and thus cannot be executed until the previous floating-point
instruction is completed and the main processor is "synchronized" with the MC68881.

The FNOP can also be used to force the processing of pending exceptions from the execution of
previous instructions. This is also inherent in the way that the MC68881 utilizes the M68000 Family
Coprocessor Interface. Once the MC68881 has received an input operand for an arithmetic
instruction, it will always release the main procesor to execute the next instruction (regardless of
whether or not concurrent execution is prevented for the instruction due to tracing) without
reporting the exception during the execution of that instruction. Then, when the main processor
attempts to initiate the execution of the next MC68881 instruction, a pre-instruction exception will
be reported that starts exception processing for the exception that occurred during the previous
instruction. By using the FNOP instruction, the user can force any pending exceptions to be
processed without performing any other operations.

Status Register: Not Affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1111°°p“;gess°ro1ooooooo

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruction.
Motorola assemblers default to ID=1 for the MC68881.

Note: FNOP uses the same opcode as the "FBcc.W <label>" instruction, with cc = F (non-trapping false)
and <label> = *+2 (which results in a displacement of 0).

3-86

FREM

Operation:

Assembler FREM.<fmt>
Syntax: FREM.X
Attributes:

FREM

IEEE Remainder

IEEE Remainder of (FPn + Source) — FPn

<ea>,FPn
FPm,FPn

Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Description: Convert the source operand to extended precision (if necessary) and calculate the IEEE
remainder of the destination floating-point data register using the source value as the divisor. The
result is stored in the destination floating-point data register, and the seven least significant quotient
bits and the sign of the quotient are stored in the FPSR quotient byte (where the quotient is the
result of FPn + Source). The |IEEE remainder function is defined as:

FPn — (Source x N)

where N = INT(FPn + Source) in the round-to-nearest mode

The FREM function is not defined for a source operand equal to zero or for a destination operand
equal to infinity. Note that this function is not the same as the FMOD instruction, which uses the
round-to-zero mode and thus returns a remainder that is different from the remainder required by
the IEEE Specification for Binary Floating-Point Arithmetic.

Operation Table:

Source In Range Zero Infinity
Destination + N
In Range IEEE Remainder NAN? FPn2
+ +0.0 +0.0
Zero NANT
- -0.0 AN -0.0
Infinity NANT NANT NANT

Notes: 1. Sets the OPERR bit in the FPSR exception byte.

2. Returns the value of FPn before the operation. However, the result will be processed by
the normal instruction termination procedure to round it as required. Thus, an underflow
and/or inexact result may occur if the rounding precision has been changed to a smaller
size since the FPn value was last loaded.

3. If either operand is a NAN, refer to 3.4.2.2 for more information.

Status Register:

Condition Codes:

Quotient Byte:

Affected as described in 3.4.2.3.1.
Loaded with the sign and least significant seven bits of the quotient

(FPn + Source). The sign of the quotient is the exclusive OR of the
sign bits of the source and destination operands.

3-87

FREM

Exception Byte:

Accrued Exception Byte:

Instruction Format:

FREM

IEEE Remainder

BSUN Cleared

SNAN Refer to 3.4.2.2.

OPERR Set if the souce is zero, or the destination is infinity; cleared
otherwise.

OVFL Cleared

UNFL Refer to 4.1.2.5.

Dz Cleared

INEX2 Cleared

INEX1 If <fmt> is Packed, refer to 4.1.2.8, cleared otherwise.

Affected as described in 4.1.2.10.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Coprocessor Effective Address
! ! v ID o 0 o0 Mode | Register
Source Destination
0 |RM] 0 Specifier Register 0 L 0 0 1 0 1

Instruction Fields:

Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruction.
Motorola assemblers default to ID=1 for the MC68881.

Effective Address Field — Determines the addressing mode for external operands.
If R/M = 0, this field is unused, and should be all zeroes.
If R/M = 1, this field is encoded with an M68000 addressing mode as shown:

Addr. Mode | Mode Register Addr. Mode | Mode Register

Dn* 000 reg. number: Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number: An #<data> 111 100
(An)+ 011 reg. number: An
-(An) 100 reg. number: An

(dy6,An) 101 reg. number: An (d16,PC) 111 010

(dg,An,Xn) 110 reg. number: An (dg,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number: An (bd,PC,Xn) 111 011

([bd,An,Xn],0d) 110 reg. number: An ([bd,PC,Xn],0d) 111 011

([bd,An],Xn,od) 110 reg. number: An ([bd,PC],Xn,0d) 111 011

* Only if <mt> is Byte, Word, Long or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.

3-88

FREM

Source Specifier Field — Specifies the source register or data format.

IEEE Remainder

If R/M = 0, specifies the source floating-point data register, FPm.
If R/M = 1, specifies the source data format:

000
001
010
011
100
101
110

WOsSOUX0NC

Long Word Integer
Single Precision Real
Extended Precision Real
Packed Decimal Real
Word Integer

Double Precision Real
Byte Integer

FREM

Destination Register Field — Specifies the destination floating-point data register, FPn.

3-89

F R E STO R E Restore Internal State F R E STO R E

(Privileged Instruction)

Operation: If in supervisor state

then MC68881 State Frame — Internal State
else trap

Assembler
Syntax: FRESTORE <ea>

Attributes: Unsized, privileged.

Description: The MC68881 aborts any execution of any operation that it was performing, and a new

internal state is loaded from the state frame located at the effective address. The first word at the
specified address is the format word of the state frame, which specifies the size of the frame and the
revision number of the MC68881 that created it. The MC68020 will write the first word to the
MC68881 Restore CIR to initiate the restore operation, and then read the Response CIR to verify
that the MC68881 recognizes the format word as valid. If the format word is invalid for this MC68881
(either because the size of the frame is not recognized, or the revision number does not match the
revision of this processor), then the MC68020 is instructed to take a format exception and the
MC68881 enters the IDLE state. If the format word is valid, the appropriate state frame is loaded,
starting at the specified location and up through higher addresses.

The FRESTORE does not normally affect the programmer's model registers of the MC68881
(except for the NULL state size, as described below); but, rather, is used only to restore the non-
user visible portion of the machine. The FRESTORE instruction may be used with the FMOVEM
instruction to perform a full context restoration of the MC68881, including the floating-point data
registers and system control registers. In order to accomplish such a restoration, the FMOVEM
instructions are first executed to load the programmer's model, followed by the FRESTORE
instruction to load the internal state and continue any previously suspended operation. Refer to
4.3 Context Switching for more information.

The current implementation of the MC68881 supports three state sizes. Refer to 4.3.2 State
Frames for more information on the exact format of these state sizes.

NULL: This state frame is four bytes long, with a format word of $0000. An FRESTORE with this
size state frame is identical to a hardware reset of the MC68881. The programmer's model is
set to the reset state, with non-signalling NANs in the floating-point data registers and zero
in the FPCR, FPSR and FPIAR (thus, the programmer's model does not need to be loaded
after this operation).

IDLE: This state frame is 28 ($1C) bytes long. An FRESTORE with this size state frame causes
the MC68881 to restore itself to an idling condition, waiting for the initiation of the next
instruction. Any exceptions that were pending at the time of the previous FSAVE will be
pending after the FRESTORE. The programmer's model is not affected by the loading of
this type of a state frame (although the completion of the suspended instruction after the
restore is executed may modify the programmer's model).

BUSY: This state frame is 184 ($B8) bytes long. An FRESTORE with this size state frame causes
the MC68881 to restore itself to the busy state, executing the instruction that was
previously suspended by an FSAVE. The programmer's model is not affected by the
loading of this type of a state frame.

3-90

F R E STO R E Restore Internal State F R E STO R E

(Privileged Instruction)

Status Register: Cleared if the state size is NULL, otherwise not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Coprocessor Effective Address
ID Mode] Register

1 1 1 1

Instruction Fields:

Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruction.

Motorola assemblers default to ID=1 for the MC68881.

Effective Address Field — Determines the addressing mode for the state frame. Only
postincrement or control addressing modes are allowed as shown:

Addr. Mode | Mode Register Addr. Mode | Mode Register
Dn — — (xxx).W 111 000
An — — (xxx).L 111 001
(An) 010 reg. number: An #<data> — —
(An)+ 011 reg. number: An
-(An) p— —

(d16,An) 101 reg. number: An (d16,PC) 111 010
(dg,An,Xn) 110 reg. number: An (dg,PC,Xn) 111 011
(bd,An,Xn) 110 reg. number: An (bd,PC,Xn) 111 011

([bd,An,Xn},0d) 110 reg. number: An ([bd,PC,Xn],0d) 111 011
([bd,An],Xn,od) 110 reg. number: An ([bd,PC]},Xn,0d) 111 011

3-91

F S A V E Save Internal State F S A V E

(Privileged Instruction)

Operation: If in supervisor state

then MC68881 Internal State — State Frame
else trap

Assembler
Syntax: FSAVE <ea>

Attributes: Unsized, privileged.

Description: The MC68881 suspends the execution of any operation that it was performing, and saves

its internal state in a state frame located at the effective address. After the save operation, the
MC68881 is in the idle state, waiting for the execution of the next instruction. The first word written
to the state frame is the format word, which specifies the size of the frame and the revision number
of this MC68881. The MC68020 initiates the FSAVE instruction by reading the MC68881 Save
CIR, which will be encoded with a format word that indicates the appropriate action to be taken by the
main processor. The current implementation of the MC68881 will always return one of five
responses in the Save CIR:

val Definiti
$0018..cceeeii Save NULL state frame
$0118......... Not Ready, come again
$0218 lilegal, take Format exception
$1F18......... Save IDLE state frame
$1FB4........o Save BUSY state frame

The Not Ready format word indicates that the MC68881 is not prepared to perform a state save and
that the MC68020 should process interrupts, if necessary, and then re-read the Save CIR. The
MC68881 uses this format word to cause the main processor to wait while an internal operation is
completed, if possible, in order to allow an IDLE frame to be saved rather than a BUSY frame. The
llegal format word is used to abort an FSAVE operation that is attempted while the MC68881 was
previously executing an FSAVE operation. All other format words cause the MC68020 to save the
indicated state frame at the specified address. These state frames are defined as follows; for more
information, refer to 4.3.2 State Frames.

NULL: This state frame is four bytes long. An FSAVE of this size state frame indicates that the
MC68881 state has not been modified since the last FRESTORE with a NULL state frame,
or hardware reset. This indicates that programmer's model is in the reset state, with non-
signalling NANs in the floating-point data registers and zero in the FPCR and FPSR (thus, it
is not necessary to perform a save of the programmer's model).

IDLE: This state frame is 28 ($1C) bytes long. An FSAVE of this size state frame indicates that the
MC68881 was in an idle condition, waiting for the initiation of the next instruction. Any
exceptions that were pending are saved in the frame, and are then cleared internally. Thus,
the pending exceptions will not be reported until after a subsequent FRESTORE of the
state frame. In addition to being used for context switching, this frame may be used by
exception handler routines, since it contains the value of the operand that caused the last
floating-point exception to be taken.

BUSY: This state frame is 184 ($B8) bytes long. An FSAVE of this size state frame indicates that
the MC68881 was at a point within an instruction where it was necessary to save the entire

3-92

F S A V E Save Internal State F S A V E

(Privileged Instruction)

internal state of the processor. This frame size is only used when absolutely necessary,
because of the large size of the frame and the amount of time required to transfer it. The
action of the MC68881 when this state frame is saved is same as for the IDLE state frame.

The FSAVE does not save the programmer's model registers of the MC68881; but, rather, is used
only to save the non-user visible portion of the machine. The FSAVE instruction may be used with
the FMOVEM instruction to perform a full context save of the MC68881, including the floating-point
data registers and system control registers. In order to accomplish such a save, the FSAVE
instruction is first executed to suspend the current operation and save the internal state, followed by
the FMOVEM instructions to store the programmer's model. Refer to 4.3 Context Switching for
more information.

Status Register: Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Coprocessor Effective Address
T 11 D 1.0 0 Mode | Register

Instruction Fields:
Caprocessor |ID Field — Specifies which coprocessor in the system is to execute this instruction.
Motorola assemblers default to ID=1 for the MC68881.

Effective Address Field — Determines the addressing mode for the state frame. Only pre -

decrement or control alterable addressing modes are allowed as shown:

Addr. Mode | Mode Register Addr. Mode | Mode Register

Dn — — (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number: An #<data> — —

(An)+ —_ —

-(An) 100 reg. number: An

(d16,An) 101 reg. number: An (d16,PC) — —

(dg,An,Xn) 110 reg. number: An (dg,PC,Xn) — —

(bd,An,Xn) 110 reg. number: An (bd,PC,Xn) — —

((bd,An,Xn],od) 110 reg. number: An ([bd,PC,Xn],0d) — —

([bd,An],Xn,od) 110 reg. number: An ([bd,PC],Xn,od) — —

3-93

FSCALE FSCALE

Scale Exponent

Operation: FPnx INT(2Sourcey _, Fpn

Assembler FSCALE.<fmt> <ea>,FPn
Syntax: FSCALE.X FPm,FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Description: Convert the source operand to an integer (if necessary) and add it to the destination
exponent. Save the result in the destination floating-point data register. This function has the
effect of multiplying the destination by 2Source byt is much faster than multiplying the destination
by 250urce when the source is an integer value.

The MC68881 assumes that the scale factor is already an integer value before the operation. If not,
the factor will be chopped (ie, rounded using the round-to-zero mode) to an integer before being
added to the exponent. When the absolute value of the source operand is > 21°, an overflow or
underflow will always result.

Operation Table:

Source In Range Zero Infinity
Destination +

In Range Scale Exponent FPn1 NAN2
Zero + +0.0 +0.0 NAN2

-0.0 -0.0

+inf +inf
Infinit NANZ2

y -int -inf

Notes: 1. Returns the FPn as the result, however, the normal FSCALE algorithm is
performed, including the rounding of the result to the defined precision.
Therefore, it is possible for an underflow and/or inexact error to occur.

2. Sets the OPERR bit in the FPSR exception byte.
3. If the source operand is a NAN, refer to 3.4.2.2 for more information.

Status Register:
Condition Codes: Affected as described in 3.4.2.3.1.

Quotient Byte: Not affected.
Exception Byte: BSUN Cleared
SNAN Refer to 3.4.2.2.
OPERR Set if the source operand is tinfinity, cleared otherwise.
OVFL Refer to 4.1.2.4.
UNFL Refer to 4.1.2.5.
DzZ Cleared
INEX2 Cleared
INEX1 If <fmt> is Packed, refer to 4.1.2.8, cleared otherwise.

Accrued Exception Byte: Affected as described in 4.1.2.10.

3-94

FSCALE FSCALE

Scale Exponent

Instruction Format:
i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Coprocessor Effective Address
11 11 D 0o 0 0 Mode | Register
Source Destination
0 |RM] 0 Specifier Register 0 1 0 0 1 ! 0

Instruction Fields:

Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruction.
Motorola assemblers default to ID=1 for the MC68881.

Effective Address Field — Determines the addressing mode for external operands.
If R/M = 0, this field is unused, and should be all zeroes.
If R/M = 1, this field is encoded with an M68000 addressing mode as shown:

Addr. Mode | Mode Register Addr. Mode | Mode Register

Dn* 000 reg. number: Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number: An #<data> 111 100
(An)+ 011 reg. number: An
-(An) 100 reg. number: An

(d16,An) 101 reg. number: An (d16,PC) 111 010

(dg,An,Xn) 110 reg. number: An (dg,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number: An (bd,PC,Xn) 111 011

([bd,An,Xn],od) 110 reg. number: An ([bd,PC,Xn],0d) 111 011

([bd,An],Xn,od) 110 reg. number: An ([bd,PC],Xn,0d) 111 011

* Only if £mt> is Byte, Word, Long or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.

Source Specifier Field — Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register, FPm.
If R'M = 1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn.

3-95

F SC C Set According to Condition

Operation: If (condition true)
then 1s — Destination
else 0s — Destination

Assembler
Syntax: FBcc.<size> <ea>

Attributes: Size= (Byte)

FScc

Description: If the specified floating-point condition is true, set the byte integer operand at the
destination to TRUE (all ones), otherwise set the byte to FALSE (all zeroes). The condition code
may be any of the 32 floating-point conditional tests as described in 3.3 Conditional Test

Definitions.

Status Register:

Condition Codes: Not affected.
Quotient Byte: Not affected.
Exception Byte: BSUN Set if the NAN condition code is set and the condition selected

is an |IEEE non-aware test.
SNAN Not Affected
OPERR Not Affected
OVFL Not Affected
UNFL Not Affected
DZ Not Affected
INEX2 Not Affected
INEX1 Not Affected

Accrued Exception Byte:lf the BSUN bit is set in the exception byte, then IOP is set in the
accumulated exception byte. All other bits are not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6

5

0

1 1 1 1 Coprc:gessor

4 3 2 1
Effective Address
Mode | Register

Conditional Predicate

Instruction Fields:

Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruction.

Motorola assemblers default to ID=1 for the MC68881.

3-96

F S C C Set According to Condition F S C C

Effective Address Field — Specifies the addressing mode for the byte integer operand:

Addr. Mode | Mode Register Addr. Mode | Mode Register

Dn 000 reg. number: Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number: An #<data> - —
(An)+ 011 reg. number: An
-(An) 100 reg. number: An

(d16,An) 101 reg. number: An (d16,PC) — —

(dg,An,Xn) 110 reg. number: An (dg,PC,Xn) — —

(bd,An,Xn) 110 reg. number: An (bd,PC,Xn) — —

([bd,An,Xn],od) 110 reg. number: An ([bd,PC,Xn],0d) — —

({bd,An},Xn,od) 110 reg. number: An ({bd,PC],Xn,od) —_ —

Conditional Predicate Field — Specifies one of 32 conditional tests as defined in section 3.3.

Note: When a BSUN exception occurs, it causes a pre-instruction exeption to be taken by the main
processor. If the exception handler returns without modifying the image of the PC on the stack
frame (to point to the instruction following the FScc), then it must clear the cause of the exception
(by clearing the NAN bit or disabling the BSUN trap) or the exception will occur again immediately
upon return to the routine that caused the exception.

3-97

FSGLDIV FSGLDIV

Single Precision Divide

Operation: FPn + Source —» FPn

Assembler FSGLDIV.<fmt> <ea>,FPn

Syntax: FSGLDIV.X FPm,FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Description: Convert the source operand to extended precision (if necessary) and divide the

destination floating-point data register by that value. Store the result in the destination floating-point
data register. The result will be rounded to single precision.

Both the source and the destination operands are assumed to be representable as single precision
values. If either operand requires more than 24 bits of mantissa to be accurately represented, the
accuracy of the result is not guaranteed. This function is undefined for 0/0 and infinity/infinity.

Operation Table:

Source In Range Zero Infinity
Destination + - + - +
R Divide +inf1 -inf1 | +0.0 -0.0
nnange - (single precision) -inf1 +inf1 -0.0 +0.0
Zero +] +0.0 -0.0 NAN 2 +0.0 -0.0
- -0.0 +0.0 -0.0 +0.0
+inf -inf +inf -inf
Infinit NAN 2
ity] int vint | int +inf

Notes: 1. Sets the DZ bit in the FPSR exception byte.
2. Sets the OPERR bit in the FPSR exception byte.

3. If the source operand is a NAN, refer to 3.4.2.2 for more information.

Status Register:

Condition Codes:

Quotient Byte:

Exception Byte:

Affected as described in 3.4.2.3.1.

Not affected.

BSUN
SNAN
OPERR
OVFL
UNFL
Dz

INEX2
INEX1

Cleared
Refer to 3.4.2.2.

Set for 0/0 or infinity/infinity

Refer to 4.1.2.4.
Refer to 4.1.2.5.

Set if the source is zero and the destination is in range, cleared

otherwise.
Refer to 4.1.2.7.

If <fmt> is Packed, refer to 4.1.2.8, cleared otherwise.

Accrued Exception Byte: Affected as described in 4.1.2.10.

3-98

F S G L D I V Single Precision Divide F S G L D l V

Instruction Format:

i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Coprocessor 0 0 Effective Address
ID Mode | Register

Source Destination
Specifier Register

1 1 1 1

0 [RM] O 0 1 0 0 1 0 0

Instruction Fields:
Coprocessor |ID Field — Specifies which coprocessor in the system is to execute this instruction.

Motorola assemblers default to ID=1 for the MC68881.

Effective Address Field — Determines the addressing mode for external operands.
if R/M = 0, this field is unused, and should be all zeroes.
If R/M = 1, this field is encoded with an M68000 addressing mode as shown:

Addr. Mode | Mode Register Addr. Mode | Mode Register

Dn* 000 reg. number: Dn (xxx).W 111 000

An —_ —_ (xxx).L 111 001

(An) 010 reg. number: An #<data> 111 100
(An)+ 011 reg. number: An
-(An) 100 reg. number: An

(d16,An) 101 reg. number: An (d16,PC) 111 010

(dg,An,Xn) 110 reg. number: An (dg,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number: An (bd,PC,Xn) 111 011

([bd,An,Xn}],0d) 110 reg. number: An ([bd,PC,Xn},0d) 111 011

([bd,An],Xn,od) 110 reg. number: An ([bd,PC],Xn,0d) 111 011

* Only if 4mt> is Byte, Word, Long or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.

Source Specifier Field — Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register, FPm.
If R’M = 1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn.

3-99

FSGLMUL

Single Precision Multiply

FSGLMUL

Operation: Source x FPn — FPn

Assembler FSGLMUL.<fmt> <ea>,FPn

Syntax: FSGLMUL.X FPm,FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Description: Convert the source operand to extended precision (if necessary) and multiply the

destination floating-point data register by that value. Store the result in the destination floating-point
data register. The result will be rounded to single precision.

Both the source and the destination operands are assumed to be representable as single precision
values. Both operands are chopped to 24 bits of mantissa before the multiplication is performed.

Operation Table:

Source In Range Zero Infinity
Destination + - + + -

Multiply +0.0 -0.0 +inf -inf
InRange | (single precision) -0.0 +0.0 | -int +inf

Zero +] +0.0 -0.0 +0.0 -0.0 NAN T

-0.0 +0.0 -0.0 +0.0

Infinit +inf -inf NAN T +inf -int
Y -inf +inf -inf +inf

Notes: 1. Sets the OPERR bit in the FPSR exception byte.
2. If the source operand is a NAN, refer to 3.4.2.2 for more information.

Status Register:

Condition Codes:

Quotient Byte:

Exception Byte:

Affected as described in 3.4.2.3.1.

Not affected.

BSUN
SNAN
OPERR

OVFL
UNFL
Dz

INEX2
INEX1

Cleared

Refer to 3.4.2.2.

Set if one operand is zero and the other is infinity, cleared
otherwise.

Refer to 4.1.2.4.

Refer to 4.1.2.5.

Cleared

Refer to 4.1.2.7.

If <fmt> is Packed, refer to 4.1.2.8, cleared otherwise.

Accrued Exception Byte: Affected as described in 4.1.2.10.

3-100

FSGLMUL FSGLMUL

Single Precision Multiply

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Coprocessor Effective Address

1 1 1 1 D 0 0 0 Mode | Register
Source Destination

0 [RM] 0 | gpecifier Register | © ' 0 0 1 1

Instruction Fields:
Coprocessor |ID Field — Specifies which coprocessor in the system is to execute this instruction.

Motorola assemblers default to ID=1 for the MC68881.

Effective Address Field — Determines the addressing mode for external operands.
If R/M = 0, this field is unused, and should be all zeroes.

If R/M = 1, this field is encoded with an M68000 addressing mode as shown:

Addr. Mode | Mode Register Addr. Mode | Mode Register

Dn* 000 reg. number: Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number: An #<data> 111 100
(An)+ 011 reg. number: An
-(An) 100 reg. number: An

(d16,An) 101 reg. number: An (d16,PC) 111 010

(dg,An,Xn) 110 reg. number: An (dg,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number: An (bd,PC,Xn) 111 011

([bd,An,Xn},0d) 110 reg. number: An ([bd,PC,Xn},0d) 111 011

([bd,An],Xn,od) 110 reg. number: An ([bd,PC},Xn,0d) 111 011

* Only if 4mt> is Byte, Word, Long or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.

Source Specifier Field — Specifies the source register or data format.
If RIM = 0, specifies the source floating-point data register, FPm.
If R/M = 1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn.

3-101

FSIN

Operation:

Assembler FSIN.<fmt>

Syntax: FSIN.X
FSIN.X

Attributes:

Description:

FSIN

Sine

Sine of Source — FPn

<ea>,FPn
FPm,FPn
FPn

Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Convert the source operand to extended precision (if necessary) and calculate the sine of

that value. Return the result to the destination floating-point data register. The function is not
defined for source operands of tinfinity. If the source operand is not in the range of [-2x...+27],
then the argument will be reduced to within that range before the sine is calculated. However, large
arguments may lose accuracy during reduction, and very large arguments (greater than approx -
imately 1020) will lose all accuracy. The result will be in the range of [-1...+1].

Operation Table:

Destination

Source

In Range Zero Infinity

Result

Sine +0.0 NAN 1

Notes: 1. Sets the OPERR bit in the FPSR exception byte.
2. If the source operand is a NAN, refer to 3.4.2.2 for more information.

Status Register:
Condition Codes:

Quotient Byte:

Exception Byte:

Affected as described in 3.4.2.3.1.

Not affected.

BSUN Cleared

SNAN Refer to 3.4.2.2.

OPERR Set if the source is tinfinity, cleared otherwise.

OVFL Cleared

UNFL Set if a sine underflow occurs, in which case the cosine result
is 1. Cosine can not underflow. Refer to 4.1.2.5.

Dz Cleared

INEX2 Refer to 4.1.2.7.

INEX1 If <fmt> is Packed, refer to 4.1.2.8, cleared otherwise.

Accrued Exception Byte: Affected as described in 4.1.2.10.

Instruction Format:

15 14 13 12 11 10 9 8 7 5 4 3 2 1 0
1 1 1 Coprocessor 0 0 Effective Address
ID Mode | Register
Source Destination
0 [RM] 0 Specifier Register 0 0 ! ! ! 0

3-102

FSIN Sine FS'N

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruction.
Motorola assemblers default to ID=1 for the MC68881.

Effective Address Field — Determines the addressing mode for external operands.
If R/M = 0, this field is unused, and should be all zeroes.
If R/M = 1, this field is encoded with an M68000 addressing mode as shown:

Addr. Mode | Mode Register Addr. Mode | Mode Register

Dn* 000 reg. number: Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number: An #<data> 111 100
(An)+ 011 reg. number: An
-(An) 100 reg. number: An

(d16,An) 101 reg. number: An (d16,PC) 111 010

(dg,An,Xn) 110 reg. number: An (dg,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number: An (bd,PC,Xn) 111 011

([bd,An,Xn],od) 110 reg. number: An ([bd,PC,Xn],0d) 111 011

([bd,An],Xn,od) 110 reg. number: An ([bd,PC],Xn,0d) 111 011

* Only if <mt> is Byte, Word, Long or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.

.........

Source Specifier Field — Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register, FPm.
If R/M = 1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real

1 1Q B Ruta Intanar

OYyi& iiheycei

Destination Register Field — Specifies the destination floating-point data register, FPn. If R/M=0
and the source and destination fields are equal, then the input operand is taken from the
specified floating-point data register, and the result is then written into the same register. If
the single register syntax is used, Motorola assemblers will set the source and destination
fields to the same value.

3-103

FSINCOS

FSINCOS

Simultaneous Sine and Cosine

Operation: Sine of Source — FPs
Cosine of Source — FPc
Assembler FSINCOS.<fmt> <ea>,FPc:FPs
Syntax: FSINCOS.X FPm,FPc:FPs
Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)
Description: Convert the source operand to extended precision (if necessary) and calculate both the

sine and the cosine of that value. Both functions are calculated simultaneously, thus, this
instruction is significantly faster than performing a separate FSIN and FCOS instruction. The sine
result is loaded into the destination floating-point data register FPs; and the cosine result is loaded
into the destination floating-point data register FPc. The condition code bits are set according to the
sine result. If FPs and FPc are specified to be the same register, the cosine result is first loaded into
the register, and then is over written with the sine result. The function is not defined for source
operands of tinfinity.

If the source operand is not in the range of [-2=...+2x], then the argument will be reduced to within
that range before the sine and cosine are calculated. However, large arguments may lose accuracy
during reduction, and very large arguments (greater than approximately 1029 will lose all accuracy.
The results will be in the range of [-1...+1].

Operation Table:

Source In Range Zero Infinity

Destination + +
FPs Sine +0.0 -0.0 NAN 1
FPc Cosine +1.0 +1.0 NAN1

Notes: 1. Sets the OPERR bit in the FPSR exception byte.
2. If the source operand is a NAN, refer to 3.4.2.2 for more information.

Status Register:

Condition Codes: Affected as described in 3.4.2.3.1 (for the sine result).

Quotient Byte: Not affected.
Exception Byte: BSUN Cleared
SNAN Refer to 3.4.2.2.
OPERR Set if the source is tinfinity, cleared otherwise.
OVFL Cleared
UNFL Refer to 4.1.2.5.
DZ Cleared
INEX2 Refer to 4.1.2.7.
INEX1 If <fmt> is Packed, refer to 4.1.2.8, cleared otherwise.

Accrued Exception Byte: Affected as described in 4.1.2.10.

3-104

FSINCOS

Instruction Format:

Simultaneous Sine and Cosine

FSINCOS

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Coprocessor Effective Address
! ! ! ! ID 0 0 0 Register
Source Destination Destination
0 |RM} 0 Specifier Register, FPs 0 1 ! 0 Register, FPc

Instruction Fields:

Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruction.

Motorola assemblers default to ID=1 for the MC68881.

Effective Address Field — Determines the addressing mode for external operands.
If R/M = 0, this field is unused, and should be all zeroes.
If R/M = 1, this field is encoded with an M68000 addressing mode as shown:

Addr. Mode | Mode Register Addr. Mode | Mode Register

Dn* 000 reg. number: Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number: An #<data> 111 100
(An)+ 011 reg. number: An
-(An) 100 reg. number: An

(d16,An) 101 reg. number: An (d16,PC) 111 010

(dg,An,Xn) 110 reg. number: An (dg,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number: An (bd,PC,Xn) 111 011

([bd,An,Xn],od) 110 reg. number: An ([bd,PC,Xn],od) 111 011

([bd,An],Xn,od) 110 reg. number: An ([bd,PC],Xn,0d) 111 011

* Only if <mt> is Byte, Word, Long or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> 1o register.

Source Specifier Field — Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register, FPm.
If R/M = 1, specifies the source data format:

Destination Register, FPc Field — Specifies the destination floating-point data register, FPc. The

000
001
010
011
100
101
110

WOSTXONr

Long Word Integer
Single Precision Real
Extended Precision Real
Packed Decimal Real
Word Integer
Double Precision Real
Byte Integer

cosine result will be stored in this register.

3-105

F S I N C O S Simultaneous Sine and Cosine F S I N C O S

Destination Register, FPs Field — Specifies the destination floating-point data register, FPc. The
sine result will be stored in this register. If FPc and FPs specify the same floating point data
register, then the sine result will be left in that register, and the cosine result will be discarded.

If R/M=0 and the source register field is equal to either of the destination register fields, then

the input operand is taken from the specified floating-point data register, and the appropriate
result is then written into the same register.

3-106

FSINH

Hyperbolic Sine

Operation: Hyperbolic Sine of Source — FPn

Assembler FSINH.<fmt> <ea>,FPn

Syntax: FSINH.X FPm,FPn
FSINH.X FPn

Attributes:

Description:

Format = (Byte, Word, Long, Single, Double, Extended, Packed)

FSINH

Convert the source operand to extended precision (if necessary) and calculate the hyper -

bolic sine of that value. Return the result to the destination floating-point data register.

Operation Table:

Destination

Source

In Range

Zero

+

Infinity

Result

Hyperbolic Sine

+0.0

-0.0

+inf

-inf

Notes: 1. If the source operand is a NAN, refer to 3.4.2.2 for more information.

Status Register:

Condition Codes:

Quotient Byte:

Exception Byte:

Accrued Exception Byte:

Instruction Format:

Affected as described in 3.4.2.3.1.

Not affected.

BSUN
SNAN
OPERR
OVFL
UNFL
Dz
INEX2
INEX1

Cleared
Refer to 3.4.2.2.
Cleared
Reter to 4.1.2.4.
Refer to 4.1.2.5
Cleared
Refer to 4.1.2.7.

If <fmt> is Packed, refer to 4.1.2.8, cleared otherwise.

Affected as described in 4.1.2.10.

15 14 13 12 11 10 9 8 7 5 4 3 2 1 0
1 1 11 Coprocessor | o Effective Address
ID Mode Register
Source Destination
0 [RM] 0 Specifier Register 0 0 0 0 ! 0

Instruction Fields:

Coprocessor |ID Field — Specifies which coprocessor in the system is to execute this instruction.
Motorola assemblers default to ID=1 for the MC68881.

3-107

F SI N H Hyperbolic Sine F S I N H

Effective Address Field — Determines the addressing mode for external operands.
If R/M = 0, this field is unused, and should be all zeroes.
If R/M = 1, this field is encoded with an M68000 addressing mode as shown:

Addr. Mode | Mode Register Addr. Mode | Mode Register

Dn* 000 reg. number: Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number: An #<data> 111 100
(An)+ 011 reg. number: An
-(An) 100 reg. number: An

(d16,An) 101 reg. number: An (d16,PC) 111 010

(dg,An,Xn) 110 reg. number: An (dg,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number: An (bd,PC,Xn) 111 011

([bd,An,Xn],od) 110 reg. number: An ([bd,PC,Xn],0d) 111 011

([bd,An],Xn,od) 110 reg. number: An ([bd,PC},Xn,0d) 111 011

* Only if <fmt> is Byte, Word, Long or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.

Source Specifier Field — Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register, FPm.
If R/M = 1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn. If R/M=0
and the source and destination fields are equal, then the input operand is taken from the
specified floating-point data register, and the result is then written into the same register. If
the single register syntax is used, Motorola assemblers will set the source and destination
fields to the same value.

3-108

FSQRT

Square Root

FSQRT

Operation: Square Root of Source — FPn
Assembler FSQRT.<fmt> <ea>,FPn
Syntax: FSQRT.X FPm,FPn
FSQRT.X FPn
Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)
Description:

Convert the source operand to extended precision (if necessary) and calculate the

square root of that number. Store the result in the destination floating-point data register. This
function is not defined for negative source operands.

Operation Table:

Destination

Source

In Range
+

+

Zero

Infinity
+

Result

Vx

NANT

+0.0

-0.0

NANT

+inf

Notes: 1. Sets the OPERR bit in the FPSR exception byte.
2. If the source operand is a NAN, refer to 3.4.2.2 for more information.

Status Register:
Condition Codes:

Quotient Byte:

Exception Byte:

Affected as described in 3.4.2.3.1.

Not affected.

BSUN Cleared

SNAN Refer to 3.4.2.2.

OPERR Set if the source operand is not zero and is negative, cleared
otherwise.

OVFL Cleared

UNFL Cleared

Dz Cleared

INEX2 Refer to 4.1.2.7.

INEX1 If <fmt> is Packed, refer to 4.1.2.8, cleared otherwise.

Accrued Exception Byte: Affected as described in 4.1.2.10.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 Coprocessor 0 0 Effective Address
ID Mode | Register
Source Destination
0 [RM| O Specifier Register 0 0 0 ! 0 0

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruction.
Motorola assemblers default to ID=1 for the MC68881.

3-109

FSQRT Square Root FSQRT

Effective Address Field — Determines the addressing mode for external operands.
If R/M = 0, this field is unused, and should be all zeroes.
Iif R/M = 1, this field is encoded with an M68000 addressing mode as shown:

Addr. Mode | Mode Register Addr. Mode | Mode Register

Dn* 000 reg. number: Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number: An #<data> 111 100
(An)+ 011 reg. number: An
-(An) 100 reg. number: An

(d16,An) 101 reg. number: An (d16,PC) 111 010

(dg,An,Xn) 110 reg. number: An (dg,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number: An (bd,PC,Xn) 111 011

([bd,An,Xn},od) 110 reg. number: An ([bd,PC,Xn],od) 111 011

([bd,An],Xn,od) 110 reg. number: An ([bd,PC],Xn,0d) 111 011

* Only if <fmt> is Byte, Word, Long or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.

Source Specifier Field — Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register, FPm.
If R'M = 1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn. If R/M=0
and the source and destination fields are equal, then the input operand is taken from the
specified floating-point data register, and the result is then written into the same register. [f
the single register syntax is used, Motorola assemblers will set the source and destination
fields to the same value.

3-110

FSUB FSUB

Subtract

Operation: FPn - Source — FPn

Assembler FSUB.<fmt> <ea>,FPn

Syntax: FSUB.X FPm,FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Description: Convert the source operand to extended precision (if necessary) and subtract that
number from the number in the destination floating-point data register. The resutlt is stored in the
destination floating-point data register.

Operation Table:

Source In Range Zero Infinity

Destination + - + - + -

In Range Subtract Subtract -inf +inf
+ +0.01 0.0

Zero Subtract -inf int

- e -0.0 +0.0' *
nfinit +inf +inf NAN2 -inf

'ty -inf -inf -inf NAN2

Notes: 1. Returns +0.0 in rounding modes RN, RZ and RP; returns -0.0 in RM.
2. Sets the OPERR bit in the FPSR exception byte.
3. If either operand is a NAN, refer to 3.4.2.2 for more information.

Status Register:
Condition Codes: Affected as described in 3.4.2.3.1.

Quotient Byte: Not affected.

Exception Byte: BSUN Cleared
SNAN Refer to 3.4.2.2.
OPERR Set if both the source and destination are like-signed infinities,
cleared otherwise.
OVFL Refer to 4.1.2.4.
UNFL Refer to 4.1.2.5.
Dz Cleared
INEX2 Refer to 4.1.2.7.
INEX1 If <fmt> is Packed, refer to 4.1.2.8, cleared otherwise.

Accrued Exception Byte:

Instruction Format:

Affected as described in 4.1.2.10.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Coprocessor Effective Address
! ! ! ! D 0 0 0 Mode | Register
Source Destination
0 [RM] 0 Specifier Register 0 1 0 ! 0 0 0

3-111

F S U B Subtract F S U B

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruction.
Motorola assemblers default to ID=1 for the MC68881.

Effective Address Field — Determines the addressing mode for external operands.
If R/M = 0, this field is unused, and should be all zeroes.
If R/M = 1, this field is encoded with an M68000 addressing mode as shown:

Addr. Mode | Mode Register Addr. Mode | Mode Register

Dn* 000 reg. number: Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number: An #<data> 11 100
(An)+ 011 reg. number: An
-(An) 100 reg. number: An

(d16,An) 101 reg. number: An (d16,PC) 111 010

(dg,An,Xn) 110 reg. number: An (dg,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number: An (bd,PC,Xn) 111 011

([bd,An,Xn],od) 110 reg. number: An ([bd,PC,Xn],0d) 111 011

([bd,An],Xn,od) 110 reg. number: An ([bd,PC],Xn,od) 111 011

* Only if <mt> is Byte, Word, Long or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.

Source Specifier Field — Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register, FPm.
If R/M = 1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn.

3-112

FTAN

Tangent FTA N

Operation: Tangent of Source — FPn

Assembler FTAN.<fmt>
Syntax: FTAN.X
FTAN.X

<ea>,FPn
FPm,FPn
FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Description: Convert the source operand to extended precision (if necessary) and calculate the
tangent of that number. Store the result in the destination floating-point data register. The function
is not defined for source operands of tinfinity. If the source operand is not in the range of
[-n/2...+m/2], then the argument will be reduced to within that range before the tangent is
calculated. However, large arguments may lose accuracy during reduction, and very large
arguments (greater than approximately 1020) will lose all accuracy.

Operation Table:

Destination

Source In Range Zero Infinity

Result

Tangent +0.0 -0.0 NAN1

Notes: 1. Sets the OPERR bit in the FPSR exception byte.
2. If the source operand is a NAN, refer to 3.4.2.2 for more information.

Status Register:
Condition Codes:

Quotient Byte:

Exception Byte:

Affected as described in 3.4.2.3.1.
Not affected.

BSUN Cleared

SNAN Refer to 3.4.2.2.

OPERR Set if the source is tinfinity, cleared otherwise.

OVFL Refer to 4.1.2.4.

UNFL Refer to 4.1.2.5.

Dz Cleared

INEX2 Refer to 4.1.2.7.

INEX1 If <fmt> is Packed, refer to 4.1.2.8, cleared otherwise.

Accrued Exception Byte: Affected as described in 4.1.2.10.

Instruction Format:

i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Coprocessor Effective Address
T o ID 0 0 0 Mode | Register
Source Destination
0 [RM] 0 Specifier Register 0 0 0 ! ! 1 1

3-113

FTAN Tangent FTAN

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruction.
Motorola assemblers default to ID=1 for the MC68881.

Effective Address Field — Determines the addressing mode for external operands.
If R/M = 0, this field is unused, and should be all zeroes.
If R/M = 1, this field is encoded with an M68000 addressing mode as shown:

Addr. Mode | Mode Register Addr. Mode | Mode Register

Dn* 000 reg. number: Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number: An #<data> 111 100
(An)+ 011 reg. number: An
-(An) 100 reg. number: An

(d16,An) 101 reg. number: An (d16,PC) 111 010

(dg,An,Xn) 110 reg. number: An (dg,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number: An (bd,PC,Xn) 111 011

([bd,An,Xn},od) 110 reg. number: An ([bd,PC,Xn],od) 111 011

([bd,An],Xn,od) 110 reg. number: An ([bd,PC],Xn,0d) 111 011

* Only if <fmt> is Byte, Word, Long or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.

Source Specifier Field — Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register, FPm.
If R'M = 1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn. If R/M=0
and the source and destination fields are equal, then the input operand is taken from the
specified floating-point data register, and the result is then written into the same register. If
the single register syntax is used, Motorola assemblers will set the source and destination
fields to the same value.

3-114

FTANH FTANH

Hyperbolic Tangent

Operation: Hyperbolic Tangent of Source — FPn
Assembler FTANH.<fmt> <ea>,FPn
Syntax: FTANH.X FPm,FPn
FTANH.X FPn
Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Description: Convert the source operand to extended precision (if necessary) and calculate the

hyperbolic tangent of that number. Store the result in the destination floating-point data register.

Operation Table:

Source In Range Zero Infinity
Destination + - + - + -
Result Hyperbolic Tangent +0.0 -0.0 +1.0 -1.0
Notes: 1. If the source operand is a NAN, refer to 3.4.2.2 for more information.
Status Register:
Condition Codes: Affected as described in 3.4.2.3.1.
Quotient Byte: Not affected.
Exception Byte: BSUN Cleared
SNAN Refer to 3.4.2.2.
OPERR Cleared
OVFL Cleared
UNFL Refer to 4.1.2.5.
Dz Cleared
INEX2 Refer to 4.1.2.7.
INEX1 If <fmt> is Packed, refer to 4.1.2.8, cleared otherwise.
Accrued Exception Byte: Affected as described in 4.1.2.10.
Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Coprocessor Effective Address
1 ! ! ! ID 0 0 0 Mode | Register
Source Destination
0 [RM[0 Specifier Register 0 0 0 ! 0 0 1

Instruction Fields:

Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruction.
Motorola assemblers default to ID=1 for the MC68881.

3-115

F T A N H Hyperbolic Tangent FT A N H

Effective Address Field — Determines the addressing mode for external operands.
If R/M = 0, this field is unused, and should be all zeroes.
If R/M = 1, this field is encoded with an M68000 addressing mode as shown:

Addr. Mode | Mode Register Addr. Mode | Mode Register

Dn* 000 reg. number: Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number: An #<data> 111 100
(An)+ 011 reg. number: An
-(An) 100 reg. number: An

(d16,An) 101 reg. number: An (d16,PC) 111 010

(dg,An,Xn) 110 reg. number: An (dg,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number: An (bd,PC,Xn) 111 011

([bd,An,Xn],od) 110 reg. number: An ({bd,PC,Xn],0d) 111 011

([bd,An],Xn,od) 110 reg. number: An ([bd,PC],Xn,0d) 111 011

* Only if <mt> is Byte, Word, Long or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.

Source Specifier Field — Specifies the source register or data format.
If R’M = 0, specifies the source floating-point data register, FPm.
If R/M = 1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn. If R/M=0
and the source and destination fields are equal, then the input operand is taken from the
specified floating-point data register, and the result is then written into the same register. |f
the single register syntax is used, Motorola assemblers will set the source and destination
fields to the same value.

3-116

FTENTOX

FTENTOX

10X

Operation: 10Source ,Fpp
Assembler FTENTOX.<fmt> <ea>,FPn
Syntax: FTENTOX.X FPm,FPn
FTENTOX.X FPn
Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Description: Convert the source operand to extended precision (if necessary) and calculate 10 to the n

power of that number. Store the result in the destination floating-point data register.

Operation Table:

Destination

Source

Zero Infinity
- + - + -

In Range

Result

10% +1.0 +inf +0.0

Notes: 1. If the source operand is a NAN, refer to 3.4.2.2 for more information.

Status Register:
Condition Codes:

Quotient Byte:

Affected as described in 3.4.2.3.1.

Not affected.

Exception Byte: BSUN Cleared
SNAN Refer to 3.4.2.2.
OPERR Cleared
OVFL Refer to 4.1.2.4.
UNFL Refer to 4.1.2.5.
Dz Cleared
INEX2 Refer to 4.1.2.7.
INEX1 If <tmt> is Packed, refer to 4.1.2.8, cleared otherwise.

Accrued Exception Byte:

Instruction Format:

Affected as described in 4.1.2.10.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Coprocessor Effective Address
ottt ID 0 0 0 Mode | Register
Source Destination
0 |RM] 0 Specifier Register 0 0 1 0 0 1 0

Instruction Fields:

Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruction.
Motorola assemblers default to ID=1 for the MC68881.

3-117

FTENTOX 10x FTENTOX

Effective Address Field — Determines the addressing mode for external operands.
If R/M = 0, this field is unused, and should be all zeroes.
If R/M = 1, this field is encoded with an M68000 addressing mode as shown:

Addr. Mode | Mode Register Addr. Mode | Mode Register

Dn* 000 reg. number: Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number: An #<data> 111 100
(An)+ 011 reg. number: An
-(An) 100 reg. number: An

(d16,An) 101 reg. number: An (d16,PC) 111 010

(dg,An,Xn) 110 reg. number: An (dg,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number: An (bd,PC,Xn) 111 011

([bd,An,Xn],od) 110 reg. number: An ([bd,PC,Xn],od) 111 011

([bd,An],Xn,od) 110 reg. number: An ([bd,PC],Xn,0d) 111 011

* Only if dmt> is Byte, Word, Long or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.

Source Specifier Field — Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register, FPm.
If R/M = 1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn. If R/M=0
and the source and destination fields are equal, then the input operand is taken from the
specified floating-point data register, and the result is then written into the same register. If
the single register syntax is used, Motorola assemblers will set the source and destination
fields to the same value.

3-118

FTRAPcc

Trap Conditionally

Operation: If condition true, then TRAP

Assembler FTRAPcc

Syntax: FTRAPcc.W #<data>
FTRAPcc.L #<data>

Attributes: Size = (Word, Long)

FTRAPcc

Description: If the selected condition is true, the main processor initiates exception processing. The
vector number is generated to reference the TRAPcc exception vector. The stacked program

counter points to the next instruction.

If the selected condition is not true, no operation is

performed, and execution continues with the next instruction in sequence. The immediate data
operand is placed in the next word(s) following the conditional predicate word and is available for
user definition for use within the trap handler. The conditional test may be any one of the 32

conditional tests defined in 3.3 Conditional Test Definitions.

Status Register:

Set if the NAN condition code is set and the condition selected

is an IEEE non-aware.

Condition Codes: Not affected.

Quotient Byte: Not affected.

Exception Byte: BSUN
SNAN Not Affected
OPERR Not Affected
OVFL Not Affected
UNFL Not Affected
Dz Not Affected
INEX2 Not Affected
INEX1 Not Affected

Accrued Exception Byte:lf the BSUN bit is set in the exception byte, then IOP is set in the
accumulated exception byte. All other bits are not affected.

Instruction Format:

15 14 13 12 11 10

9 8

4 3 2 1 0

1 1 1 1 Copr?gessor 0 1 1 Mode
0 0 0 0 0 0 0 o0 Conditional Predicate

16-bit Operand or Most Significant Word of 32-bit Operand (if needed)

Least Significant Word of 32-bit Operand (if needed)

Instruction Fields:

Coprocessor 1D Field — Specifies which coprocessor in the system is to execute this instruction.

Motorola assemblers default to ID=1 for the MC68881.

3-119

FTRAPcc Trap Conditionally FTRAPcc

Mode Field — Specifies the form of the instruction.
010 — The instruction is followed by a word operand.
011 — The instruction is followed by a long word operand.
100 — The instruction has no operand following it.

Conditional Predicate Field — Specifies one of 32 conditional tests as described in 3.3.
Operand Field — Contains an optional word or long word operand that is user defined.
Note: When a BSUN exception occurs, it causes a pre-instruction exeption to be taken by the main
processor. If the exception handler returns without modifying the image of the PC on the stack
frame (to point to the instruction following the FTRAPcc), then it must clear the cause of the

exception (by clearing the NAN bit or disabling the BSUN trap) or the exception will occur again
immediately upon return to the routine that caused the exception.

3-120

FTST

Operation:

Assembler FTST.<fmt>
Syntax: FTST.X
Attributes:
Description:

Test Operand

<ea>
FPm

codes according to that number.

FTST

Test Source Operand and Set the Floating-Point Condition Codes

Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Convert the source operand to extended precision (if necessary) and set the condition

Operation Table: The contents of this table differ from the other operation tables. A letter in an entry
of this table indicates that the designated condition code bit is always set by the FTST operation. All

unspecified condition code bits are cleared during the operation.

Destination

Source

In Range
+

+

Zero

Infinity

Result

none

N

z

NZ | NI

Notes: 1. If the source operand is a NAN, set the NAN condition code bit.
2. If the source operand is a SNAN, set the SNAN bit in the FPSR exception byte.

Status Register:
Condition Codes:

Quotient Byte:

Exception Byte:

Affected as described in 3.4.2.3.1.

Not affected.

BSUN Cleared

SNAN Refer to 3.4.2.2.

OPERR Cleared

OVFL Cleared

UNFL Cleared

Dz Cleared

INEX2 Cleared

INEX1 If <fmt> is Packed, refer to 4.1.2.8, cleared otherwise.

Accrued Exception Byte:

Aftected as described in 4.1.2.10.

Instruction Format:

15 14 13 12 11 10 9 8 7 5 4 3 2 1 0
1 1] 1 Coprocessor 0 0 Effective Address
ID Mode | Register
Source Destination
0 [RM 0 Specifier Register ! ! 1 0 ! 0

Instruction Fields:

Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruction.

Motorola assemblers default to ID=1 for the MC68881.

3-121

FTST Test Operand FTST

Effective Address Field — Determines the addressing mode for external operands.
If R/M = 0, this field is unused, and should be all zeroes.
If R/M = 1, this field is encoded with an M68000 addressing mode as shown:

Addr. Mode | Mode Register Addr. Mode | Mode Register

Dn* 000 reg. number: Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number: An #<data> 111 100
(An)+ 011 reg. number: An
-(An) 100 reg. number: An

(d16,An) 101 reg. number: An (d16,PC) 111 010

(dg,An,Xn) 110 reg. number: An (dg,PC,Xn) 11 011

(bd,An,Xn) 110 reg. number: An (bd,PC,Xn) 111 011

([bd,An,Xn],od) 110 reg. number: An ([bd,PC,Xn],0d) 111 011

([od,An],Xn,od) 110 reg. number: An ([bd,PC],Xn,0d) 111 011

* Only if <fmt> is Byte, Word, Long or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.

Source Specifier Field — Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register, FPm.
If R’'M = 1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Since the MC68881 uses a common command word format for all of
the arithmetic instructions (which FTST is considered one of) this field is treated in the same
manner for FTST as for the other arithmetic instructions, even though the destination register
is not modified. This field should be set to zero in order to maintain compatibility with future
devices, although the MC68881 will not take an illegal instruction trap if it is not zero.

3-122

FTWOTOX

2 FTWOTOX

Operation: 2Source _, Fpp
Assembler FTWOTOX.<fmt> <ea>,FPn
Syntax: FTWOTOX.X FPm,FPn
FTWOTOX.X FPn
Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)
Description: Convert the source operand to extended precision (if necessary) and calculate 2 to the

power of that number. Store the result in the destination floating-point data register.

Operation Table:

Destination

Source

In Range

Zero Infinity

+ - + -

Result

2X +1.0

+inf +0.0

Notes: 1. If the source operand is a NAN, refer to 3.4.2.2 for more information.

Status Register:
Condition Codes:

Quotient Byte:

Exception Byte:

Affected as described in 3.4.2.3.1.

Not affected.

BSUN
SNAN
OPERR
OVFL
UNFL
Dz
INEX2
INEX1

Cleared

Refer to 3.4.2.2.

Cleared

Refer to 4.1.2.4.

Refer to 4.1.2.5.

Cleared

Refer to 4.1.2.7.

If <fmt> is Packed, refer to 4.1.2.8, cleared otherwise.

Accrued Exception Byte: Affected as described in 4.1.2.10.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Coprocessor Effective Address
111 D 0 o0 o0 Mode | Register
Source Destination
0 [RM] 0 Specifier Register 0 0 ! 0 0 0 1

Instruction Fields:

Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruction.
Motorola assemblers default to ID=1 for the MC68881.

3-123

FTWOTOX 2 FTWOTOX

Effective Address Field — Determines the addressing mode for external operands.
If R/M = 0, this field is unused, and should be all zeroes.
If R/M = 1, this field is encoded with an M68000 addressing mode as shown:

Addr. Mode | Mode Register Addr. Mode | Mode Register

Dn* 000 reg. number: Dn (xxx).W 111 000

An —_ — (xxx).L 111 001

(An) 010 reg. number: An #<data> 111 100
(An)+ 011 reg. number: An
-(An) 100 reg. number: An

(d16,An) 101 reg. number: An (d16,PC) 111 010

(dg,An,Xn) 110 reg. number: An (dg,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number: An (bd,PC,Xn) 111 011

([bd,An,Xn],0d) 110 reg. number: An ([bd,PC,Xn],0d) 111 011

([bd,An],Xn,od) 110 reg. number: An ([bd,PC],Xn,0d) 111 011

* Only it <tmt> is Byte, Word, Long or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.

Source Specifier Field — Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register, FPm.
If R’M = 1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn. If R/M=0
and the source and destination fields are equal, then the input operand is taken from the
specified floating-point data register, and the result is then written into the same register. If
the single register syntax is used, Motorola assemblers will set the source and destination
fields to the same value.

3-124

3.5 INSTRUCTION ENCODING DETAILS

The following paragraphs provide the details for the object code formats for the general,
branch, set on condition, save, and restore type coprocessor instructions.

3.5.1 Object Code Format

All MC68881 instructions are from two to eight words in length as shown below (the longest
case is for an immediate operand of six words — the X or P format).

Operation Word

MC68881 Command Word, or Conditional Predicate

Effective Address Extension Words, Displacement, or Immediate Operand (If Any, 1-6 Words)

All MC68881 instructions contain an operation word, formatted as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Coprocessor
1 1 1 1 Identification Type Type Dependent
Coprocessor ID — Specifies which coprocessor in the system is to execute this instruction.

Motorola assemblers default to ID = 1 for the MC68881.

Type — Specifies the type of coprocessor instruction:
000 — General Instruction (Arithmetics, FMOVE, FMOVEM)
001 — FDBcc, FScc, FTRAPcc

010 — FBcc.W
011 — FBcc.L
100 — FSAVE

101 — FRESTORE
110 — (Undefined, Reserved)
111 — (Undefined, Reserved)

Type Dependent — Normally specifies the effective address or conditional predicate, but
usage depends on the Type field.

3-125

3.5.2 General Type Coprocessor Instruction Format

The general type coprocessor instruction format (shown below) is used for all MC68881

arithmetic, move, move multiple, move constant, and transcendental instructions.

Operation
Word

Command
Word

The interpretation of the command word fields, OPCLASS, RX, RY, and instruction extension

15 14 13 12 N 10 9 8 7 6 5 4 3 2 1
Coprocessor Effective Address
! ! ! ! ID 0 0 0 Mode | Reqgister
OPCLASS RX RY EXTENSION

field varies with the instruction type and is summarized in Table 3-11.

Table 3-11. General Type Instruction Command Word Fields

OPCLASS RX RY Instruction Class
000 Source, Destination, FPm to FPn. The extension field specifies
FPm FPn the operation (move, add, etc.).
001 —_ —_ Undefined, reserved.
010 000- 110 Destination, Memory to FPn. The extension field specifies
Source Data FPn the operation (move, add, etc.).
Format
111 Destination, Move constant to FPn. The extension field
FPn contains the offset of the ROM constant.
011 Destination Source, Move FPm to an external destination. If the
Data Format FPm destination format is packed decimal, the
extension field specifies the k-factor (#k or Dn);
otherwise it should be zero.
100 FPcr 000 Move single or multiple to the system control
Select registers. The extension field should be zero.
101 FPcr 000 Move single or multiple system control registers
Select to memory. The extension field should be zero.
110 Register list 00m Move multiple to the floating-point data registers.
and addressing The least significant bit of the RY field and the
mode select. extension field contains the register list, or the
number of the main processor data register that
contains the list.
111 Register list 00m Move multiple from the floating-point data
and addressing registers. The least significant bit of the RY field
mode select. and the extension field contains the register list, or
the number of the main processor data register
that contains the list.

3-126

The MC68881 general type instructions are classified into groups based upon instruction
function and argument location (external or internal to the MC68881) as follows:
Floating-Point Register to Register

External Operand to Floating-Point Data Register

Move Constant to Floating-Point Data Register

Move Floating-Point Data Register to External Destination

Move System Control Register

Move Multiple Floating-Point Data Registers

SO AN

Subdivision of the instruction set on this basis simplifies the specification of the MC68020
services required by each MC68881 instruction. The MC68881 requests services from the
MC68020 via the coprocessor interface primitives described in 5.3 INSTRUCTION
DIALOGS.

If the command word indicates that an operand external to the MC68881 needs to be
fetched or stored, the effective address field of the operation word is an MC68020 effective
address descriptor. When the MC68881 requests an external data access, the MC68020
evaluates the source/destination effective address based upon this effective address
descriptor and transfers operand(s) to/from the MC68881.

If all operands are contained in MC68881 floating-point data registers, the effective address
field should be all zeros. No F-line emulator exception trap is taken if the effective address
field is not all zeros; instruction execution proceeds normally. However, to ensure
compatibility with future devices, assembler and compiler programmers should fill this field
with zeros if it is not used.

3.5.2.1 REGISTER-TO-REGISTER INSTRUCTIONS. This class of instructions
includes floating-point data register to floating-point data register moves and the monadic
and dyadic arithmetic and transcendental instructions. For dyadic arithmetic instructions, the
destination operand is replaced by the result.

FPm <op> FPn — FPn
For monadic arithmetic instructions, the operand is the source FPm and the result is placed
into the destination FPn. The source FPm and destination FPn may be the same floating-
point data register.

FPm <op> — FPn

3-127

The instruction format for this instruction class is:

15 14 13 12 1" 10 9 8 7 6 5 4 3 2 1 0

;] 1 1 Coprc:c[:)essor 0 0 0 0 0 0 0 0 0
0 0 0 Source Destination EXTENSION
Register Register

Source or Destination
Register Field Encoding

000 - FPO 100 - FP4
001 - FP1 101 - FP5
010 - FP2 110 - FP6
011 - FP3 111 - FP7

The extension field indicates the operation to be performed. Table 3-12 lists the extension

field encodings and functions. Also shown are the services requested of the MC68020 by
the MC68881.

Table 3-12. Extension Field Encoding, Arithmetic Operations

Extension Field Instruction Type MC68020 Services
$00 FMOVE to FPn Note 1
$01 FINT Note 1
$02 FSINH Note 1
$03 FINTRZ Note 1
$04 FSQRT Note 1
$06 FLOGNP1 Note 1
$08 FETOXM1 Note 1
$09 FTANH Note 1
$0A FATAN Note 1
$0C FASIN Note 1
$0D FATANH Note 1
$0E FSIN Note 1
$OF FTAN Note 1
$10 FETOX Note 1
$11 FTWOTOX Note 1
$12 FTENTOX Note 1
$14 FLOGN Note 1
$15 FLOG10 Note 1
$16 FLOG2 Note 1
$18 FABS Note 1
$19 FCOSH Note 1
$1A FNEG Note 1

3-128

Table 3-12. Extension Field Encoding, Arithmetic Operations (Continued)

Extension Field Instruction Type MC68020 Services
$1C FACOS Note 1
$1D FCOS Note 1
$1E FGETEXP Note 1
$1F FGETMAN Note 1
$20 FDIV Note 1
$21 FMOD Note 1
$22 FADD Note 1
$23 FMUL Note 1
$24 FSGLDIV Note 1
$25 FREM Note 1
$26 FSCALE Note 1
$27 FSGLMUL Note 1
$28 FSUB Note 1
$30-$37 FSINCOS Note 1
$38 FCMP Note 1
$3A FTST Note 1
$40-$7F Unused, Reserved Note 2

NOTES:

1.

Two primitives may be issued for these operations. If the operation is register-to-register, the first primitive
issued is null, with PC=1 to request that the MC68020 pass the current program counter if there are enabled
exceptions. If the operation is external operand-to-register, then the first primitive is evaluate effective
address and transfer data (with CA = 1 and PC=1 if exceptions are enabled). The second primitive is null
(CA = 0) to terminate the instruction dialog.

The MC68881 will issue the take pre-instruction exception primitive with a vector number of 11 to instruct the
MC68020 to take an F-line emulator trap.

Some extension field encodings are unspecified and are redundant with valid instructions implemented by
the MC68881 and will not cause an F-line exception if executed. However, these encodings are reserved for
future definition by Motorola, and thus should not be generated by assemblers or compilers. The redundant
encodings are: $05, $07, $0B, $13, $17, $1B, $29-$2F, and $3B—$3F.

3.5.2.2 EXTERNAL OPERAND-TO-REGISTER INSTRUCTIONS. This class of
instructions includes external operand to floating-point data register moves and arithmetic
instructions. External operands may be located in memory or an MC68020 data register (for
B, W, L, or S data types). Data format conversion from one of the seven memory data formats
to the extended data form is implicit in these instructions. For dyadic arithmetic instructions,
the number in FPn is replaced by the resuit.

External Operand <op> FPn — FPn

For monadic arithmetic instructions, the external operand is the source and the result is
placed into the destination FPn.

External Operand <op> — FPn

3-129

The instruction format for this instruction class is shown below.
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Coprocessor Effective Address
1 1 ! 1 ID 0 0 0 Mode | Register
Source Destination
0 1 0 Format Register EXTENSION

Destination Register
Field Encoding

000 - FPO 100 - FP4
001 - FP1 101 - FP5
010 - FP2 110 - FP6
011 - FP3 111 - FP7

The source format field specifies the data format of the external operand. From the external
operand are derived the length (in bytes) of the operand and the allowed effective
addressing modes. The MC68881 decodes the source format field as listed in Table 3-13.
The extension field indicates the operation to be performed. Table 3-12 lists the extension
field encodings and functions. Also listed are services requested of the MC68020 by the
MC68881.

Table 3-13. Length and Allowed <ea> for
External-to-Register Arithmetic Instructions

Source Format External Operand Length Allowed
Encoding DataFormat in Bytes <ea>
000 Long Word Integer 4 Note 1
001 Single Precision Real 4 Note 1
010 Extended Precision Real 12 Note 2
011 Packed Decimal Real 12 Note 2
100 Word Integer 2 Note 1
101 Double Precision Real 8 Note 2
110 Byte Integer 1 Note 1
NOTES:

1. Only data effective addressing modes are allowed.
2. Only memory effective addressing modes are allowed.

3-130

3.5.2.3 MOVE CONSTANT TO FLOATING-POINT DATA REGISTER
INSTRUCTIONS. The MC68881 constant ROM contains frequently used constants such
as 0.0 and &n. These instructions permit the loading of a correctly rounded constant into a
floating-point data register without an external data access. The instruction format for this
instruction class is shown below.

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

11 11 C°p“igess°' o o o|lo o o o o o©
Destination
o 1 o1 1 1 Registor EXTENSION

Destination Register
Field Encoding

000 - FPO 100 - FP4
001 - FP1 101 - FP5
010 - FP2 110 - FP6
011 - FP3 111 - FP7

The extension field is used as an address into the MC68881 constant ROM. The FMOVECR
instruction definition in 3.4.3 Individual Instruction Descriptions provides the valid extension
field values for the FMOVECR instruction. The only service required by the MC68881 from
the MC68020 is the passing of the MC68020 PC to FPIAR if exceptions are enabled (other
than BSUN), requested with the null (CA = 1, PC = 1) primitive.

3.5.2.4 MOVE TO EXTERNAL DESTINATION INSTRUCTIONS. External
destinations may be memory or an MC68020 data register. Data format conversion from the
extended data format to one of the seven memory data formats is implicit for these
instructions. The instruction format for this instruction class is shown below.

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

Coprocessor Effective Address
L D °c o o Mode | Register
Destination Source
0 1 ! Format Register EXTENSION

Source Register
Field Encoding
000 - FPO 100 - FP4
001 - FP1 101 - FP5
010 - FP2 110 - FP6
011 - FP3 111 - FP7

3-131

The destination format field indicates the data format of the external destination. The
MC68020 performs all transfers to an external destination at the request of the MC68881.
When the MC68881 makes a request for a transfer to an external destination, the length (in
bytes) of the operand, and the allowed effective addressing modes are specified in the
primitive.

The MC68881 decodes the destination format field to determine the length of the operand to
be stored and the allowed effective addressing modes as listed in Table 3—14.

Table 3-14. Length and Allowed <ea> for
Register-to-External Instructions

Destination Format External Operand Length Allowed
Encoding DataFormat in Bytes <ea>
000 Long Word Integer 4 Note 1
001 Single Precision Real 4 Note 1
010 Extended Precision Real 12 Note 2
011 Packed Decimal Real 12 Note 2
with static k-factor
100 Word Integer 2 Note 1
101 Double Precision Real 8 Note 2
110 Byte Integer 1 Note 1
111 Packed Decimal Real 12 Note 2

with dynamic k-factor

NOTES:
1. Only data alterable effective addressing modes are allowed.
2. Only memory alterable effective addressing modes are allowed.

The extension field affects instruction execution only when the destination data format is
packed decimal. A destination format encoding of 011 specifies a packed decimal string
destination with the formatting parameter, k, in the extension field (encoded as a twos
complement value).

A destination format encoding of 111 indicates a packed decimal string destination with the
formatting parameter, k, in an MC68020 data register. The extension field contains the
number of the MC68020 data register that contains the k-factor. The MC68020 data register
number is encoded in bits 4 though 6 of the extension field; bits 0 through 3 should be zero.
The seven least significant bits of the MC68020 data register contain a twos complement k-
factor. The 25 most significant bits of the MC68020 data register are ignored Table 3-15
lists the destination format field encodings, related extension field encodings instruction
operation, and the services requested of the MC68020 by the MC68881.

3-132

Destination Format Extension External Operand MC68020
Encoding Encoding Data Format Services
000 0000000 Long Word Integer Notes 1, 2
001 0000000 Single Precision Real Notes 1, 2
010 0000000 Extended Precision Real Notes 1, 2
011 kk kkkkk Packed Decimal Real with Note 1
a Static k Factor
100 0000000 Word Integer Notes 1, 2
101 0000000 Double Precison Real Notes 1, 2
110 0000000 Byte Integer Notes 1, 2
111 rrr0000 Packed Decimal with Note 3

NOTES:

Table 3-15. Extension Field Encodings for
Register-to-Memory Move Instructions

a Dynamic k Factor

1. Four service requests may be issued for this instruction type:

C.

d.

Null (CA = 1, PC = x) may be first used to request the transfer of the PC to the FPIAR if
exceptions are enabled.

Null (CA = 1, A = 1) is used to force the MC68020 to wait while the conversion takes place.
Evaluate effective address and transfer data (CA = 1) is issued to request the transfer of
the converted operand.

Null (CA = 0) is used to terminate the dialog if no exception occurred. If an exception
occurred, the take mid-instruciton exception primitive is used to terminate the dialog.

2. The extension field should be all zeros; although no F-line emulator trap is taken if it is not.
Assemblers and compilers should fill the extension field with zeros to ensure compatibility with
future devices.

3. Bits 0 through 3 of the extension field should be zero, although no F-line emulator trap is taken if
not. Assemblers and compilers should set these bits to zero to assure compatibility with future
devices. Four service requests are issued for this instruction:

a.

Transfer single main processor register (CA = 1, PC = x) is first used to request the
transfer of the PC to the FPIAR (if exceptions are enabled) and to transter the MC68020
data register containing the k factor.

Null (CA =1, |A = 1) is used to force the MC68020 to wait while the conversion takes place.

Evaluate effective address and transfer data (CA = 1) is issued to request the transfer of
the converted operand.

Null (CA = 0) is used to terminate the dialog if no exceptions occurred. If an exception
occurred, the take mid-instruction exception primitive is used to terminate the dialog.

3-133

3.5.2.5 MOVE SYSTEM CONTROL REGISTER INSTRUCTIONS. This class of
instructions includes the move single system control register instruction and the move
multiple system control registers instruction. For the move single system control register
instruction, external 32-bit operands may be immediate, in memory or an MC68020 register.
For the move multiple system control register instructions, external operands may only be
immediate or in memory (immediate addressing is only allowed if dr = 0). The instruction
format for this class of instructions is shown below.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Coprocessor Effective Address
1 1 1 1 ID 0 0 0 Mode | Register
Register
1 0 dr List 0 0 0 0 0 0 0 0 0 0

The dr bit indicates a read of the MC68881 (1) or a write to the MC68881 (0). The register
select field specifies the system control register or registers to be moved during the
operation. Table 3-16 lists the dr and register list field encodings, instruction operation,
operand size, allowed effective addressing modes, and services required of the MC68020
by the MC68881 for this instruction type.

Bits 0 to 9 of the command word should be zero, although no F-line trap will be taken if they
are not. Assemblers and compilers should set these bits to zeros to ensure compatibility with
future devices.

3.5.2.6 MOVE MULTIPLE FLOATING-POINT DATA REGISTERS
INSTRUCTIONS. This class of instructions provides move multiple floating-point data
register operations analogous to the M68000 move multiple address and data registers
instructions. Unlike the integer counterpart, the floating-point register list can be specified
either statically in the instruction or dynamically in an MC68020 data register.

The addressing modes for the move multiple from memory to floating-point data registers

instruction are restricted to the control and address register indirect with postincrement
effective addressing modes.

3-134

dr Register
Bit List
000
001
010
011
100
101
110
111

[efolofoNoloNoNe)

000
001
010
011
100
101
110
111

[V ST O I Y

NOTES:

1. This operation requires two primitives to be issued to the MC68020. Thefirst primitive is evaluate effective
address and transfer data (CA = 1), indicating the appropriate transfer size and allowed effective addressing

Table 3-16. Encoding for Move FPcr Operations

Instruction
Operation

(Undefined, Reserved)
Move to FPIAR
Move to FPSR
Move to FPSR and FPIAR
Move to FPCR
Move to FPCR and FPIAR
Move to FPCR and FPSR
Move to FPCR, FPSR,

and FPIAR
(Undefined, Reserved)
Move from FPIAR
Move from FPSR
Move from FPSR and FPIAR
Move from FPCR
Move from FPCR and FPIAR
Move from FPCR and FPSR
Move to FPCR, FPSR,

and FPIAR

Transfer Size Allowed
(in Bytes) <ea>

Any
Data
Memory
Data
Memory
Memory
Memory

NOOAOLEN

-

Alterable

Data Alterable
Memory Alterable
Data Alterable
Memory Alterable
Memory Alterable
Memory Alterable

DO AOAEN

-

mode. The second primitive is null (CA = 0) to terminate the instruction dialog.

2. For the current implementation of the MC68881, this encoding is redundant with the 001 encoding of the
register select field (i.e., it selects the FPIAR as the only register to be moved); however, this encoding is

reserved for future use by Motorola.

The addressing modes for the move multiple from floating-point data registers to memory
instruction are restricted to the control alterable and address register indirect with

predecrement effective addressing modes.

NOTE
The effective addressing mode restrictions for this instruction are enforced by
the MC68020 when the transfer multiple coprocessor registers response
primitive is received (not by the MC68881 when it receives the command
word). If the encoding of the effective address field in the operation word is
inconsistent with the encoding of the dr and mode fields in the command
word, unexpected results will occur. In some cases, the instruction will be
executed, but the order of the register transfer will be the reverse of the
appropriate order for the addressing mode. However, system integrity is
preserved for all cases.

3-135

MC68020
Services

Notes 1,2
Note 1
Note 1
Note 1
Note 1
Note 1
Note 1
Note 1

Notes 1,2
Note 1
Note 1
Note 1
Note 1
Note 1
Note 1
Note 1

The instruction format for this class of instructions is shown below.

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

Coprocessor Effective Address
v ID o 0 0 Mode | Register
1 1 dr Mode 0 0 0 Register List

The dr bit indicates a read of the MC68881 (1) or a write to the MC68881 (0). The mode field
specifies the order of the register transfer and the location of the register list. The definitions
of the mode field bits are:

0x Transfer FP7 through FPO.
1x Transfer FPO through FP7.
x0 Register List is Static.

x1 Register List is Dynamic.

The order of the register transfer that is selected affects the interpretation of the register list,
because the list is always scanned starting with the most significant bit. Thus, for the 0x
encoding of the mode field, the most significant bit of the register list corresponds to FP7,
and the least significant bit corresponds to FPO. For the 1x encoding, this relationship is
reversed.

The type of the register list also affects the interpretation of the register list field. If a static list
is selected, then the register list field of the command word contains the register list. If a
dynamic register list is selected, then the register list field of the command word contains the
number of the MC68020 data register that contains the register list. The format of the register
list field in the command word for the various mode field encodings is shown below. If a bit in
the register list is set, then the corresponding register is moved, otherwise the list is scanned
for the next bit that is set. For the dynamic register list format, "rrr" specifies the MC68020
data register that contains the register list. The format of a dynamic register list is the same
as the format of the appropriate static list, and it is contained in the least significant eight bits
of the MC68020 data register.

Mode Field Encoding Register List Field Format
00 — FP7 FP6 FP5 FP4 FP3 FP2 FP1 FPO
10 — FPO FP1 FP2 FP3 FP4 FP5 FP6 FP7
x1 —_ 0 r r r 0 0 0 0

3-136

Table 3-17 lists the dr and mode field encodings, instruction operation, allowed effective
addressing modes, and services required of the MC68020 by the MC68881 for this
instruction type.

dr
Bit
0

a4 A aa00O0

NOTES:

1)

2)

3)

Table 3-17. Encodings for Move Multiple FPn Operations

Mode Instruction Allowed MC68020
Field Operation <ea> Modes Services
00 (Invalid operation) — Note 1
01 (Invalid operation) — Note 1
10 Move to registers, static register list (An)+ or Control Note 2
11 Move to registers, dynamic register list (An)+ or Control Note 3
00 Move from registers, static register list —(An) Note 2
01 Move from registers, dynamic register list —(An) Note 3
10 Move from registers, static register list Control Alterable Note 2
11 Move from registers, dynamic register list Control Alterable Note 3

These encodings cause the MC68881 to perform an operation that is inconsistent with the M68000 Family
move multiple operations. For these cases, the selected registers are transferred in the order that is
appropriate for the pre-decrement addressing mode (ie., FP7 though FPO0), using a static or dynamic register
list, respectively. However, the MC68020 does not allow the pre-decrement addressing mode for a move
from memory to multiple coprocessor registers operation. Thus, assemblers and compilers should not
generate these encodings, or unexpected results may occur.

This instruction requires two primitives; the first is the transfer multiple coprocessor registers (CA = 1)
primitive to request that the MC68020 evaluate the effective address, read the register select CIR, and
transfer the number of registers indicated by the mask (with an operand size of 12 bytes for each register).
The second primitive is null(CA = 0), which is used to terminate the dialog.

This instruction requires three primitives; the first is the transfer single main processor register (CA = 1)
primitive to request the transfer of the MC68020 data register that contains the dynamic register list. The
second is the transfer multiple coprocessor registers (CA = 1) primitive to request that the MC68020
evaluate the effective address, read the register select CIR, and transfer the number of registers indicated
by the mask (with an operand size of 12 bytes for each register). The third primitive is null (CA = 0) to
terminate the dialog.

3.5.2.7 UNDEFINED, RESERVED COMMAND WORDS. The command word
encoding shown below is undefined and reserved for future Motorola use. All undefined,
reserved command word encodings generate an F-line emulator exception. Additional
command word encodings which generate an F-line emulator exception are specified in

Table 3-17.
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 Coprceressor 0 0 0 X X X X X X
0 0 1 X X X X X X X X X X X X X

3-137

3.5.3 FDBcc, FScc, and FTRAPcc Instruction Formats

These instructions all use the same operation word type field encoding and command word

format as shown below. The instruction specific field of the operation word determines the
instruction variation and is defined in Table 3-18 for each instruction type.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 Coprc:cDessor 0 0 1 Instruction Specific

0 0 0 0 0 0 0 0 0 0 Conditional Predicate

Table 3-18 Encodings for the FDBcc, FScc, and FTRAPcc Instructions

Instruction Instruction Selected MC68020
Specific Field Operation <ea> Services
000 xxx FScc <ea> Dn (Note 1)
001 xxx FDBcc Dn,<label> —_ (Note 2)
010 xxx FScc <ea> (An) (Note 1)
011 xxx FScc <ea> (An)+ (Note 1)
100 xxx FScc <ea> - Ane ENote 1;
101 xxx FScc <ea> 1g(AN) Note 1
110 xxx FScc <ea> indexed/indirect (Note 1)
111 000 (Undefined, reserved) — (Note 3)
111 001 (Undefined, reserved) —_ (Note 3)
111 010 FTRAPcc.W #<data> — (Note 4)
111 011 FTRAPcc.L #<data> — (Note 4)
111 100 FTRAPcc with no parameter — (Note 4)
111 101 (Undefined, reserved) — (Note 3)
111 110 (Undefined, reserved) — (Note 3)
111 111 (Undefined, reserved) — (Note 3)
NOTES:

1)

The MC68020 evaluates the <ea> and writes the conditional predicate to the MC68881 for evaluation. The
null (CA = 0) primitive is used to return the true/false evaluation, and the appropriate value is then written to
the the <ea> by the MC68020. The value of xxx specifies the MC68020 data or address register (Dn or An)
used in the <ea> evaluation.

The MC68020 writes the conditional precicate to the MC68881 for evaluation. The null (CA = 0) primitive is
used to return the true/false evaluation. If the condition is true, then the MC68020 proceeds to the next
instruction, otherwise, the counter register Dn.W (specified by the value of xxx) is decremented, and the
new value is compared with —1. If it is equal to —1, then the MC68020 proceeds to the next instruction;
otherwise, the 16—bit displacement is sign extended and added to the PC.

The MC68020 takes an F-line emulation trap.

The MC68020 writes the conditional precicate to the MC68881 for evaluation. The Null (CA = 0) primitive is
used to return the true/false evaluation. If the condition is true, then the cpTRAPcc exception is taken.
Otherwise, the MC68020 will proceed to the next instruction, discarding the optional immediate operand if
necessary.

3-138

For the FDBcc, FTRAPcc.W, and FTRAPcc.L forms of this instruction class, the displacement
or operand word(s) follows immediately after the conditional predicate word.

NOTE
From the perspective of the MC68881, these instructions are identical to the
branch type coprocessor instructions. The various operations are handled by
the MC68020 in a manner that is transparent to the MC68881.

3.5.4 Conditional Branch Instruction Format

For this instruction type, the MC68020 writes a conditional predicate to the MC68881
condition CIR for evaluation. The MC68881 determines whether the conditional predicate is
true or false based on the floating-point condition codes as described in 3.3 Conditional
Test Definitions. The true or false result is returned to the main processor with the null
primitive. The formats for this instruction type are shown below.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Coprocessor

D 0 1 0 Conditional Predicate

1 1 1 1

16-bit Displacement

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

Coprocessor

D 0 1 1 Conditional Predicate

32-bit Displacement

The conditional predicate field specifies the conditional test to be performed. Table 3—19
lists the conditional predicate encodings and the MC68881 responses. For details on how
the true or false response is calculated, refer to 3.3 Conditional Test Definitions.

The displacement is a twos complement integer which indicates the relative distance in
bytes from the displacement word(s) (i.e., the PC value used in the branch destination
calculation is the address of the displacement word(s)). A 16-bit displacement is sign
extended before it is used in the branch destination calculation.

NOTE

From the perspective of the MC68881, the two forms of this instruction are
identical. The size of the displacement is determined by the MC68020 and is

3-139

transparent to the MC68881. Also, the FNOP instruction syntax that is
recognized by Motorola assemblers generates an FBcc.W instruction with cc =
F (false) and a displacement value of zero.

Table 3-19. Conditional Predicate Evaluation Responses

Conditional MC68881
Predicate Mnemonic Definition Response

000000 F False Note 1

v 000001 EQ Equal Note 1
3 000010 OGT Ordered Greater Than Note 1
000011 OGE Ordered Greater Than or Equal Note 1
000100 OLT Ordered Less Than Note 1
000101 OLE Ordered Less Than or Equal Note 1
000110 OGL Ordered Greater or Less Than Note 1
000111 OR Ordered Note 1
001000 UN Unordered Note 1
001001 UEQ Unordered or Equal Note 1
001010 UGT Unordered or Greater Than Note 1
001011 UGE Unordered or Greater or Equal Note 1
001100 ULT Unordered or Less Than Note 1
001101 ULE Unordered or Less or Equal Note 1
001110 NE Not Equal Note 1
001111 T True Note 1
010000 SF Signaling False Note 2
010001 SEQ Signaling Equal Note 2
010010 GT Greater Than Note 2
010011 GE Greater Than or Equal Note 2
010100 LT Less Than Note 2
010101 LE Less Than or Equal Note 2
010110 GL Greater or Less Than Note 2
010111 GLE Greater Less or Equal Note 2
011000 NGLE Not (Greater, Less or Equal) Note 2
011001 NGL Not (Greater or Less) Note 2
011010 NLE Not (Less or Equal) Note 2
011011 NLT Not (Less Than) Note 2
011100 NGE Not (Greater or Equal) Note 2
011101 NGT Not (Greater Than) Note 2
011110 SNE Signaling Not Equal Note 2
011111 ST Signaling True Note 2
1XxxxX — —(Undefined, Reserved)— Note 3

NOTES:

1. Indicate the condition true or false result by using the null (CA = 0) primitive.

2. If the NAN condition code bit is set, then set the BSUN bit in the FPSR. If the BSUN trap is enabled, then
return the take pre-instructionexception primitive with the BSUN vector number; otherwise, indicate the
condition true/false result by using the null (CA = 0) primitive.

3. Not used, redundant encodings with Oxxxxx. No F-line trap is taken if these bit patterns are used. To ensure
compatibility with future devices, assemblers and compilers should use the Oxxxxx encodings.

3-140

For all instructions, the conditional predicate field specifies the conditional test to be
evaluated. Table 3-19 lists the conditional predicate encodings and the MC68881
responses. For details on how the true or false response is calculated, refer to
3.3 Conditional Test Definitions.

NOTE
Bits 6 through 15 of the command word are shown to be filled with zeros;
however no F-line emulator trap is taken if they are not. To ensure
compatibility with future devices, assemblers and compilers should fill this field
with zeros.

3.5.5 Save Instruction Format

The FSAVE instruction indicates that the MC68881 must immediately suspend any current
operation and saving the internal state in memory. Effective addressing modes are restricted
to control alterable and address register indirect with predecrement modes.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Coprocessor Effective Address

! ! ! ! ID ! 0 0 Mode 1 Register

3.5.6 Restore Instruction Format

The MC68881 restore instruction indicates that regardless of the current state of operation, a
new internal state is to be loaded immediately. Effective addressing modes are restricted to
control and address register indirect with postincrement modes.

15 14 13 12 M 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 Coprocessor 1 0 1 Eftective Address
ID Mode 1 Register

3-141

3.6 INSTRUCTION FORMAT SUMMARY

The following paragraphs present a summary of the binary encodings for the MC68881
instruction set. The unique encoding for each instruction is shown explicitly, with the
encoded fields common to all of the instructions detailed in a single table at the beginning of
this section.

3.6.1 Coprocessor ID Field

This field of each instruction specifies which one of eight possible coprocessors in a system
is to perform the operation. There are no restrictions placed on the value of the ID field by the
main processor in the system; however, certain conventions should be followed. Motorola
assemblers default to coprocessor ID = 1 for the MC68881, although directives are available
to change this default. Furthermore, due to the hardware implementation of the MC68851
paged memory management unit, that device must be assigned to coprocessor ID = 0 if it is
used in a system. Thus the MC68881 should not be assigned to coprocessor ID = 0 if it is
anticipated that an MC68851 may be used in a system.

3.6.2 Effective Address Field

This field specifies the M68000 Family addressing mode that is to be used to locate
operands external to the MC68881 (if required by the instruction). For some operations,
restrictions are placed on which of the available addressing modes are allowed to be used.
These restrictions are enforced by hardware in the MC68020 and MC68881, and Motorola
assemblers will not generate operation words with disallowed effective addressing mode
field encodings. The encoding for this fields are shown in Table 3-20.

3.6.3 Register/Memory Field
This field is common to all of the arithmetic instructions and the FMOVE to FPn instruction. A

zero in this field indicates that the operation is register-to-register, while a one in this field
indicates that the source operand is external to the MC68881.

3-142

Table 3-20. Effective Address Field Encoding Summary

Assembler
Address Modes Mode| Register| Data | Memory | Control | Aiterable| Syntax
Data Register Direct 000 | reg. no. X - - X Dn
Address Register Direct 001 | reg.no. | - - - X An
Address Register Indirect 010 | reg. no. X X X X (An)
Address Register Indirect
with Postincrement 011 | reg. no. X X - X (An)+
Address Register Indirect
with Predecrement 100 | reg. no. X X - X —(An)
Address Register Indirect
with Displacement 101 | reg. no. X X X X (d16,An)
Address Register Indirect with
Index (8-Bit Displacement) 110 | reg. no. X X X X (d8,An,Xn)
Address Register Indirect with
Index (Base Displacement) 110 | reg. no. X X X X (bd,An,Xn)
Memory Indirect Post-Indexed | 110 | reg. no. X X X X ([bd.An}],Xn,od)
Memory Indirect Pre-Indexed 110 | reg. no. X X X X ([bd,An,Xn],od)
Absolute Short 111 000 X X X X (xxx).W
Absolute Long 111 001 X X X X (xxx).L
Program Counter Indirect
with Displacement 111 010 X X X - (d16,PC)
Program Counter Indirect with
Index (8-Bit Displacement) 111 011 X X X - (d8,PC,Xn)
Program Counter Indirect with
Index (Base Displacement) 111 011 X X X - (bd,PC,Xn)
PC Memory Indirect
Post-Indexed 111 011 X X X - ([bd,PC],Xn,od
PC Memory Indirect
Pre-Indexed 111 011 X X X - ([bd,PC,Xn),od)
Immediate 111 100 X X - - #<data>

3-143

3.6.4 Source Specifier Field

This field is common to all of the arithmetic instructions and the FMOVE floating-point data
register instruction. The definition of this field is affected by the value of the R/M field as
shown below:

If R/M = 0, it specifies the source floating-point data register, FPm.

If R/M = 1, it specifies the source operand data format.

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

3.6.5 Destination Register Field

This field is common to all of the arithmetic instructions and the FMOVE to FPn instruction.
This field specifies the floating-point data register that is to be used as the destination. The
result of an operation is always stored in this register, and one of the source operands will
come from this register for dyadic instructions.

3.6.6 Conditional Predicate Field
This field is common to all of the conditional instructions and specifies the MC68881
conditional test that is to be evaluated for the main processor. Table 3-21 shows the

conditional predicate binary encodings for the 32 conditional tests supported by the
MC68881.

3-144

FABS

Table 3-21. Conditional Predicate Field Encoding Summary

Conditional
Predicate Mnemonic Definition
000000 F False
000001 EQ Equal
000010 OGT Ordered Greater Than
000011 OGE Ordered Greater Than or Equal
000100 OLT Ordered Less Than
000101 OLE Ordered Less Than or Equal
000110 OGL Ordered Greater or Less Than
000111 OR Ordered
001000 UN Unordered
001001 UEQ Unordered or Equal
001010 UGT Unordered or Greater Than
001011 UGE Unordered or Greater or Equal
001100 ULT Unordered or Less Than
001101 ULE Unordered or Less or Equal
001110 NE Not Equal
001111 T True
010000 SF Signaling False
010001 SEQ Signaling Equal
010010 GT Greater Than
010011 GE Greater Than or Equal
010100 LT Less Than
010101 LE Less Than or Equal
010110 GL Greater or Less Than
010111 GLE Greater Less or Equal
011000 NGLE Not (Greater, Less or Equal)
011001 NGL Not (Greater or Less)
011010 NLE Not (Less or Equal)
011011 NLT Not (Less Than)
011100 NGE Not (Greater or Equal)
011101 NGT Not (Greater Than)
011110 SNE Signaling Not Equal
011111 ST Signaling True
3.6.7 Instruction Format Diagrams
The instruction formats are summarized below.
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Coprocessor Effective Address
oo D ¢ o0 0 Mode | Register
Source Destination A , . "
0 [RM[0 Specifier Register 0 0 ! ! 0 0 0

3-145

FACOS

15 14 13 12 11 10 9 8 7 4 3 2 1
Coprocessor Effective Address
! ! ! ! ID 0 0 | Register
Source Destination
0 |RM] 0 Specifier Register ! 1 1 0
FADD
15 14 13 12 M 10 9 8 7 4 3 2 1
1 1 1 1 Coprocessor 0 0 Effective Address
ID Mode | Register
Source Destination
0 [R/M] 0 Specifier Register 0 0 0 1
FASIN
15 14 13 12 11 10 9 8 7 4 3 2 1
1 1 1 1 Coprocessor 0 0 Effective Address
ID Mode | Register
Source Destination
0 [RM] 0 Specifier Register 0 1 1 0
FATAN
15 14 13 12 11 10 9 8 7 4 3 2 1
1 1 1 1 Coprocessor 0 0 Effective Address
D Mode | Register
Source Destination
0 [RM| O Specifier Register 0 1 0 L
FATANH
15 14 13 12 11 10 9 8 7 4 3 2 1
1 1 1 1 Coprocessor 0 0 Effective Address
ID Mode | Register
Source Destination
0 [RM] 0 Specifier Register 0 ! ! 0

3-146

FBcc

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
11 1 q | Gopracessor |, 4 sz Conditional Predicate
16-Dit Dispiacement, or Most Significant Word of 32-bit Dispiacement
Least Significant Word of 32-bit Displacement (if needed)
Size Field — Specifies the size of the twos complement displacement:
Size = 0 — Displacement is 16-bits and will be sign extended.
Size = 1 — Displacement is 32-bits.
FCMP
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Coprocessor Effective Address
1 1 1 1 D 0 0 0 Mode 1 Register
Source Destination
0 [RM] 0 Specifier Register 0 ! ! ! 0 0 0
FCOS
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Coprocessor Effective Address
! ! 11 ID ° 0 0 Mode | Register
Source Destination
0 |RM] 0 Specifier Register N 0 ! ! ! 0 !
FCOSH
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Coprocessor Effective Address
1T 1 1 1 D o o0 o0 | Register
Source Destination
0 [RM] 0 Specifier Register 0 0 ! ! 0 0 1
FDBcc
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Coprocessor Count
1 1 1 1 D 0 0 1 0 0 1 Register
0 0 0 0 0 0 0 0 0 0 Conditional Predicate

£ kit MNiamlaas o 3
O-LIL vispialeriier

Count Register Field — Specifies the main processor data register to be decremented.

3-147

FDIV

15 14 13 12 11 10 9 8 7 4 3 2 1
Coprocessor Effective Address
1 1A D Y | Register
Source Destination
0 [R/M[0 Specifier Register 0 0 0 0
FETOX
15 14 13 12 11 10 9 8 7 4 3 2 1
Coprocessor Effective Address
1 1 1 1 ID 0 0 | Register
Source Destination
0 [R/M] 0 Specifier Register 1 0 0 0
FETOXM1
15 14 13 12 11 10 9 8 7 4 3 2 1
1 1 1 1 Coprocessor 0 0 Effective Address
ID Mode | Register
Source Destination
0 |RM| 0 Specifier Register 0 ! 0 0
FGETEXP
15 14 13 12 11 10 9 8 7 4 3 2 1
Coprocessor Effective Address
1 1 1 ! ID 0 0 | Register
Source Destination
0 |RM] 0 Specifier Register ! ! ! !
FGETMAN
15 14 13 12 11 10 9 8 7 4 3 2 1
1 1 1 1 Coprocessor 0 0 Effective Address
ID Mode | Register
Source Destination
0 [RM] 0 Specifier Register 1 ! ! !
FINT
15 14 13 12 11 10 9 8 7 4 3 2 1
1 1 1 1 Coprocessor 0 o Effective Address
D Mode | Register
Source Destination
0 [RM] 0 Specifier Register 0 0 0 0

3-148

FINTRZ

i5 14 13 12 11 10 9 8 7 4 3 2 1
Coprocessor Effective Address
1 1 11 D o 0 | Register
Source Destination
0 |RM] 0 Specifier Register 0 0 0 1
FLOG10
15 14 13 12 11 10 9 8 7 4 3 2 1
Coprocessor Effective Address
1 1 11 D 0o o0 | Register
Source Destination
0 |RM| 0 Specifier Register ! 0 ! 0
FLOG2
15 14 13 12 11 10 9 8 7 4 3 2 1
1 1 1 1 Coprocessor 0 o Effective Address
ID Mode | Register
Source Destination
0 [RM[0 Specifier Register ! 0 ! 1
FLOGN
15 14 13 12 11 10 9 8 7 4 3 2 1
1 1 1 1 Coprocessor 0 0 Effective Address
ID Mode | Register
Source Destination
0 |RM| 0 Specifier Register 1 0 ! 0
FLOGNP1
15 14 13 12 11 10 9 8 7 4 3 2 1
1 1 1 1 Coprocessor 0 0 Effective Address
ID Mode | Register
Source Destination
0 |RM| 0 Specifier Register 0 0 1 1
FMOD
15 14 13 12 11 10 9 8 7 4 3 2 1
1 1 1 1 Coprocessor 0 0 Effective Address
ID Mode | Register
Source Destination
0 |RMI 0 Specifier Register 0 0 0 0

3-149

FMOVE to FPn
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Coprocessor Effective Address

! ! T ID o o0 o Mode | Register
Source Destination

0 [RM[0 Specifier Register 0 0 0 0 0 0 0

FMOVE from FPn
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Coprocessor Effective Address
! ! ! ! ID 0 0 0 Mode | Register
Destination Source . .
0 1 1 Format Register k-factor (if required)

Destination Format Field — Specifies the data format of the destination operand as follows:

000 — Long Word Integer

001 — Single Precision Real

010 — Extended Precision Real

011 — Packed Decimal Real, static k-factor

100 — Word Integer

101 — Double Precision Real

110 — Byte Integer

111 — Packed Decimal Real, dynamic k-factor

k-factor Field — Specifies the format of the packed decimal string to be generated (if the

Destination Format field indicates packed decimal), or the number of the main processor data
register that contains the format specification. The interpretation of the k-factor is:

-64 to 0 — Number of significant digits to the right of the decimal point.
+1to +17 — Number of significant digits in the mantissa.
+18to 463 — Sets the OPERR bit, treated as +17.

The format of this field for a dynamic k-factor is:
rrr0000
Where "rrr" is the number of the main processor data register that contains the k-factor.

FMOVE FPcr
i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Coprocessor Effective Address
1 1 1 1 ID 0 0 0 Mode i Register
Register
1 0 | dr Select 0 0 0 0 0 0 0 0 0 0

dr Field — Specifies the direction of the transfer:
0 — Move memory to system control register.
1 — Move system control register to memory.

Register Select Field — Specifies the system control register to be moved:

001 — FPIAR
010 — FPSR
100 — FPCR

3-150

FMOVECR
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1111C°p’°|gess°'ooooooooo

Destination
0 i 0 1 1 1 Register ROM offset

ROM offset Field — Specifies the offset in the the MC68881 Constant ROM where the desired
constant is located.

FMOVEM FPn
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Coprocessor Effective Address
oo D 0 0 0 Mode | Register
1 1 |dr Mode 0 0 0 Register List

dr Field — Specifies the direction of the transfer.
0 — Move the listed registers from memory to the MC68881.
1 — Move the listed registers from the MC68881 to memory.

Mode Field — Specifies the type of the register list and addressing mode.
00 — Static register list, predecrement addressing mode.
01 — Dynamic register list, predecrement addressing mode.
10 — Static register list, postincrement or control addressing mode.
11 — Dynamic register list, postincrement or control addressing mode.
Register List Field:
Static list ~— contains the select mask; if a register is to be moved, the corresponding bit
in the list is set, otherwise it is clear.
Dynamic list — contains the main processor data register number, rrr, as shown below.

Register List Format

Static, -(An) — FP7 FP6 FP5 FP4 FP3 FP2 FP1 FPO
Static, (An)+ or Control — FPO FP1 FP2 FP3 FP4 FP5 FP6 FP7
Dynamic — 0 r r r 0 0 0 0

The format of the dynamic list mask is the same as for the static list, and is contained in the
least significant 8-bits of the specified MC68020 data register.

FMOVEM FPcr
i5 14 13 12 11 {10 9 8 7 6 5 4 3 2 1 0

Coprocessor Effective Address
oo D 0 0 0 Mode | Register
Register
1 0 | dr List 0 0 0 0 0 0 0 0 0 0

dr Field — Specifies the direction of the transfer:
0 — Move memory to system control registers.
1 — Move system control registers to memory.

Register List Field — Specifies the system control registers to be moved:

000 — (Undefined, reserved) 100 — FPCR

001 — FPIAR 101 — FPCR, then FPIAR

010 — FPSR 110 — FPCR, then FPSR

011 — FPSR, then FPIAR 111 — FPCR, then FPSR, then FPIAR

3-151

FMUL

15 14 13 12 11 10 9 8 7 4 3 2 1 0
1 1 1 1 Coprocessor 0 0 Effective Address
ID Mode | Register
Source Destination
0 |RM[0 Specifier Register 0 0 0 1 1
FNEG
15 14 13 12 11 10 9 8 7 4 3 2 1 0
1 1 1 1 Coprocessor 0 0 Effective Address
ID Mode | Register
Source Destination
S i Specifier Register ! ! 0 1 0
FNOP
15 14 13 12 11 10 9 8 7 4 3 2 1 0
11 1 q | Coprecessor g 0o 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
FREM
i5 14 13 12 11 10 9 8 7 4 3 2 1 0
Coprocessor Effective Address
! ! T ID 0 0 | Register
Source Destination
0 [RM[O Specifier Register 0 0) 0 1
FRESTORE
15 14 13 12 11 10 9 8 7 4 3 2 1 0
1 1 1 1 Coprocessor 1 0 Effective Address
D Mode | Register
FSAVE
15 14 13 12 11 10 9 8 7 4 3 2 1 0
’ 1 11 Coprocessor 1 0 Effective Address
ID Mode | Reqgister

3-152

FSCALE

15 14 13 12 11 10 9 8 7 6 4 3 2 1 0
Coprocessor Effective Address
1 1 1 1 D 0 0 0 | Register
o |rRm| o | Source Destination | o 0 1 1 o0
Specifier Register
FScc
15 14 13 12 11 10 9 8 7 6 4 3 2 1 0
Coprocessor Effective Address
1 1 1 1 D 0 0 1 | Register
0 0 0 0 0 0 0 0 0 0 Conditional Predicate
FSGLDIV
15 14 13 12 11 10 9 8 7 6 4 3 2 1 0
Coprocessor Effective Address
o D 0 o0 0 Mode | Register
Source Destination
0 [R/M] 0 Specifier Register 0 0 0 ! 0 0
FSGLMUL
15 14 13 12 11 10 9 8 7 6 4 3 2 1 0
Coprocessor Effective Address
1 1 1 1 ID 0 0 0 Mode | Register
Source Destination
0 |RM] 0 Specifier Register 0 0 0 ! ! 1
FSIN
15 14 13 12 11 10 9 8 7 6 4 3 2 1 0
Coprocessor Effective Address
11 11 D 0 0 0 Mode | Register
Source Destination
0 [R/M] 0 Specifier Register 0 0 ! ! 1 0
FSINCOS
15 14 13 12 11 10 9 8 7 6 4 3 2 1 0
" P B “ Coprocessor n n n Effective Address
] i i i D v v v Mode Register
Source Destination Destination
0 |R/M] 0 Specifier Register, FPs 0 ! 0 Register, FPc

3-153

FSINH

15 14 13 12 11 10 9 8 7 4 3 2 1 0
Coprocessor Effective Address
o1t D 0 0 Mode | Register
Source Destination
0 |RM] O Specifier Register 0 0 0 1 0
FSQRT
15 14 13 12 11 10 9 8 7 4 3 2 1 0
1 1 1 1 Coprocessor 0 0 Effective Address
ID Mode | Register
Source Destination
0 |RM[0 Specifier Register 0 0 1 0 0
FSUB
i5 14 13 12 11 10 9 8 7 4 3 2 1 0
1 1 1 1 Coprocessor 0o o0 Effective Address
ID Mode | Register
Source Destination
0 [RM] 0 Specifier Register 0 1 0 0 0
FTAN
i5 14 13 12 11 10 9 8 7 4 3 2 1 0
1 1 1 1 Coprocessor 0 0 Effective Address
ID Mode | Register
Source Destination
0 |RM| 0 Specifier Register 0 1 1 1 1
FTANH
15 14 13 12 11 10 9 8 7 4 3 2 1 0
1 1 1 1 Coprocessor 0 o Effective Address
ID Mode | Register
Source Destination
0 [R/M] 0 Specifier Register 0 ! 0 0 1
FTENTOX
15 14 13 12 11 10 9 8 7 4 3 2 1 0
1 1 1 1 Coprocessor 0 0 Effective Address,
ID Mode | Register
Source Destination
0 [RM[O Specifier Register ! 0 0 ! 0

3-154

FTRAPcc

15 14 13 12 11 10 9 8 7 4 3 2 1 0
11 1 1 | Copegessr |5 11 Mode
0 0 0 0 0 0 0 0 0 Conditional Predicate
16-bit Operand or Most Significant Word of 32-bit Operand (if needed)
Least Significant Word of 32-bit Operand (if needed)
Mode Field — Secifies the form of the instruction:
010 — The instruction is followed by a 16-bit operand.
011 — The instruction is followed by a 32-bit operand.
100 — The instruction has no operand following it.
FTST
15 14 13 12 11 10 9 8 7 4 3 2 1 0
1 1 1 1 Coprocessor 0 0 Effective Address
D Mode | Register
Source Destination
0 |RMI O | gpecifier Register t 1 0 1 0
FTWOTOX
15 14 13 12 11 10 9 8 7 4 3 2 1 0
Coprocessor Effective Address
1 1 1 1 D 0 0 1 Register
Source Destination
0 |R/MI 0 Specifier Register 1 0 0 0 1

3-155

SECTION 4
EXCEPTION PROCESSING

This section describes how the MC68881 and the main processor handle exceptional
conditions during the processing of floating-point instructions. These exceptional conditions
may be detected internally by the MC68881 or the main processor or externally by the main
processor.

The MC68020 handles exceptions by viewing any coprocessor in an M68000 system as an
extension to the main processor; the fact that a coprocessor is separate from the main
processor is transparent to the programmer. Thus, the exception processing for all
coprocessors in a system is coordinated by the main processor in a manner that is
consistent across all exception types, whether detected during the execution of an
instruction native to the main processor or during a coprocessor instruction.

The processing of an exception detected during the execution of an MC68881 instruction
involves the following basic steps:
1) Detect the exception.
2) Determine the exception vector number and report the exception to the main
processor (if detected by the MC68881).
3) Change processing states if needed (user to supervisor).
4) Save the old context of the main processor (performed automatically by the
MC68020).
5) Load a new context from the address contained in the exception vector table.
6) Execute the exception handler.
7) Return to the previous context.

The first two steps involve slightly different operations for exceptions detected by the main
processor and those detected by the MC68881, but the manner in which these operations
are performed is consistent with non-coprocessor related exceptions. The major difference
in the processsing of exceptions detected by the MC68881 and the main processor is the
point at which exception processing starts. For all main processor-detected, and some
MC68881-detected exceptions, processing for the exception begins during the execution of
the coprocessor instruction by the main processor. However, for many of the MC68881-
detected exceptions, processing for the exception does not begin until after the main
processor completes execution of the offending instruction and attempts execution of a new
floating-point instruction. This is because the execution of most MC68881 instructions is
concurrent with the execution of non-MC68881 instructions by the main processor. The
manner of handling this type exception supports a sequential instruction programming
model.

4-1

The action of the processor during step 7 above depends upon the type of exception that
was previously taken. When the exception handler completes execution, a return from
exception (RTE) instruction is executed, and the previously interrupted program resumes
execution at:
1) The beginning of the instruction that was preempted by an exception detected by or
reported to the MC68020 (pre-instruction exception),
2) The point where the exception occurred during the execution of an instruction (mid-
instruction exception), or
3) The beginning of the instruction immediately following the instruction that caused or
detected the exception (post-instruction exception).

The following paragraphs describe the causes of various MC68881-related exceptions and
how they are handled by the MC68881 and the main processor. Throughout this discussion,
the main processor is assumed to be an MC68020; although any other processor can be
programmed to simulate the M68000 Family coprocessor interface that is implemented on
the MC68020.

4.1 MC68881 DETECTED EXCEPTIONS

MC68881-detected exceptions fall into two categories: those related to communications with
the main processor (F-line traps and protocol violations) and those related to the execution
of floating-point instructions (computational errors such as divide by zero, or instructions
designed to cause a trap such as the FTRAPcc instruction). The protocol for handling each of
these exception types is described in detail below.

The main processor coordinates all exception processing. Therefore when the MC68881
detects an exception, it cannot always force exception processing immediately but must wait
until the main processor is ready to start exception processing. The main processor is
always prepared to process an exception when it attempts to initiate a new MC68881
instruction. Thus, if an MC68881-detected exception occurs during the calculation phase of
an instruction, it is held pending within the MC68881 until the next write to the command or
condition coprocessor interface register (CIR). Then, instead of returning the first primitive of
the dialog for the new instruction, the MC68881 returns the take pre-instruction exception
primitive to start exception processing for the previous instruction.

The MC68881 may also report an exception after the output of an operand to memory. In this
case, a take mid-instruction exception primitive is issued after the operand is stored in
memory (if a conversion error occured). The mid-instruction exception allows the exception
handler to more easily determine the address of the exceptional operand, since the
MC68020 includes the results of the effective address calculation for the destination
operand in the mid-instruction stack frame (the long word at offset +$10).

The third point at which the MC68881 can indicate an exception to the main processor is in
response to a protocol violation. If an unexpected access to a coprocessor interface register

ratiana a nratanal vialatian tha MALO0A4 will immadiataly an~aada tha raananen CIR tA tha
LAUoTO a PIVIVLUIE vivialivil, UIT IvivLUOOO T will Hiicuialcly TIHILUUT UIT 1TopVITOT wilt v UiIT

take mid-instruction exception primitive using the protocol violation vector number. This
allows the protocol violation handler to determine the cause of the violation (either an illegal

4-2

primitve from the MC68881 or an illegal access by the MC68020) and perform necessary
action. Since an MC68881 protocol violation is a catastrophic error, and the MC68881
cannnot return an illegal primitive, the only appropriate action is to abort the task that
detected the protocol violation.

The basic protocol followed in response to an MC68881 detected exception is:

1) The MC68881 encodes the appropriate take exception primitive (pre- or mid-
instruction), along with the vector number, in the response CIR.

2) The MC68020 reads the response CIR (usually in an attempt to initiate the next
instruction) and receives the take exception request.

3) The MC68020 acknowledges the request by writing an exception acknowledge to the
control CIR. The appropriate stack frame is then stored in memory, and control is
transferred to the exception handler routine.

4) In response to the exception acknowledge, the MC68881 aborts any internal opera-
tion that may be active (this only applies to protocol violations), clears all pending
exceptions, and enters the idle state.

The following paragraphs discuss the exception vector assignments used by the MC68881,
and each of the exception types that can be detected by the MC68881.

4.1.1 Exception Vectors

The M68000 Family of processors uses a data structure called the exception vector table as
a localized dispatching point for all exceptional conditions that may occur in a system. The
exception vector table is a 1024-byte structure made up of 256 long word entries. Each entry
in the table is a pointer to the routine that should be given control in response to a specific
exceptional occurance. When an exception occurs, an index is generated during the
automatic processing for that exception that selects one of the vector entries. This index is
called the vector number, and is an 8-bit value that is multiplied by four to calculate an offset
into the vector table. Of the 256 possible vector numbers, 64 are reserved by Motorola for
definition by M68000 Family devices; the remaining 192 are for definition by system
designers.

Of the 64 reserved vectors, the MC68020 defines all but 25. The MC68881 utilizes three of
the same vector entries defined by the MC68020 and defines seven additional vectors for
support of floating-point exceptions. The vectors defined by the MC68881 are shown in
Table 4-1. The vector number given is the value (shown in decimal) that is encoded in the
appropriate take exception response primitive (except for the FTRAPcc vector number which
is generated internally by the MC68020). The vector offset is the location of the
corresponding entry in the vector table. The MC68020 adds the vector offset to the value
contained in the vector base register to calculate the absolute address of the vector. Refer to
the MC68020 32-Bit Microprocessor User's Manual for further information on the exception
processing operations performed by the MC68020 and the full definition of the exception
vector table.

4-3

Table 4-1. MC68881 Exception Vector Assignments

Vector Number Vector Offset
(Decimal) (Hexadecimal) Assignment
7 $01C FTRAPcc Instruction
11 $02C F-Line Emulator
13 $034 Coprocessor Protocol Violation
48 $0Co Branch or Set on Unordered Condition
49 $0C4 Inexact Result
50 $ocs Floating-Point Divide by Zero
51 $0CC Underflow
52 $0DO Operand Error
53 $0D4 Overflow
54 $0D8 Signaling NAN

4.1.2 Instruction Exceptions and Traps

The following paragraphs describe the causes for each exception, what information is
available to the trap handler, and what results are generated if traps are enabled or
disabled. MC68881 instruction exceptions arise from the detection of abnormal conditions
during coprocessor instruction execution. All MC68881 detected instruction exceptions are
enabled or disabled via the FPCR ENABLE byte.

There are eight exceptions that can be generated by the execution of a floating-point
instruction. The location of the exception bits in the EXC and ENABLE bytes are shown in
Figure 4-1. If more than one enabled exception occurs on the same instruction, then the
highest priority instruction trap is taken (BSUN is the highest; INEX2/INEX1 is the lowest).
When multiple exceptions occur, the MC68881 traps to the highest priority exception that is
enabled, and the lower priority exception can not cause a second trap. It is the programmer's
responsibility to determine if any of the exception bits that have lower priority than the
exception taken are set.

15 14 1B 12 1 10 9 8
| Bsun | snan [operr| ovrL [unrL | bz [inexe [imexi |

INEXACT DECIMAL INPUT
INEXACT OPERATION
DIVIDE BY ZERO
UNDERFLOW

OVERFLOW

OPERAND ERROR
SIGNALLING NOT A NUMBER

BRANCH/SET ON UNORDERED

Figure 4-1. EXC and ENABLE Byte Bit Assignments

4-4

MC68881 instruction exceptions which arise from the move floating-point data register to
external destination instructions are reported to the MC68020 as mid-instruction exceptions.
All other MC68881 detected instruction exceptions are reported as pre-instruction
exceptions. The MC68881 move multiple, move system control register, and FSAVE
instructions can not generate coprocessor detected instruction exceptions. The FRESTORE
instruction can generate coprocessor detected instruction exceptions only when the state
frame format written to the coprocessor is unrecognized.

In the following exception descriptions, the term "intermediate result" is used frequently.
During the execution of a floating-point algorithm, the MC68881 execution control unit (ECU)
contains a 67-bit mantissa (for rounding purposes) and a 17-bit exponent (to ensure that
overflow or underflow can never occur during the main algorithm). At the end of the
algorithm, this intermediate result must then be stored into a floating-point data register, an
MC68020 data register, or into memory. It is this intermediate result that is checked for
underflow, rounded, and checked for overflow to obtain the final result.

4.1.2.1 BRANCH/SET ON UNORDERED (BSUN). The BSUN exception may occur
only on MC68881 conditional instructions with the following IEEE non-aware branch
condition predicates:

GT Greater Than GL Greater or Less Than

NGT Not Greater Than NGL Not Greater or Less Than
GE Greater Than or Equal GLE Greater or Less or Equal
NGE Not Greater Than or Equal NGLE Not Greater or Less or Equal
LT Less Than SF Signaling False

NLT Not Less Than ST Signaling True

LE Less Than or Equal SEQ Signaling Equal

NLE Not Less than or Equal SNE Signaling Not Equal

During the MC68881 conditional instructions, the MC68020 writes the conditional predicate
to the condition CIR and reads the response CIR. If an instruction exception is pending from
a previously executed MC68881 instruction, the exception is reported as a pre-instruction
exception. Following exception processing of the pending instruction exception, the
MC68020 restarts the MC68881 conditional instruction. If no exception is pending, the
MC68881 will evaluate the conditional test and report the result to the MC68020.

The MC68881 detects a BSUN exception if the conditional predicate is one of the |IEEE non-
aware branches, and the NAN condition code bit is set. When this exception is detected, the
BSUN bit in the FPSR exception status byte is set.

Trap Disabled Results: The MC68881 evaluates the condition and reports "true" or
"false" to the MC68020 in the response CIR.

Trap Enabled Results: The MC68881 reports a pre-instruction exception with the BSUN
vector number to the MC68020 in lieu of a "true” or "false” report.

The BSUN exception is unique in that the trap is taken before the requested conditional

predicate is evaluated. Furthermore, the instruction that caused the BSUN exception is re-
executed upon return from the BSUN trap handler. Therefore, it is the responsibility of the

45

trap handler to modify the floating-point condition codes so that when the trap handler
returns, the conditional instruction does not continue to take the BSUN trap. The trap
handler, by modifying the condition codes, determines whether the "true" or "false" report is
indicated to the MC68020 when the conditional instruction is re-executed. This allows the
trap handler to determine how the unordered condition is to be handled.

4.1.2.2 SIGNALING NOT-A-NUMBER. SNANs are used as escape mechanisms for
user defined, non-IEEE data types. The MC68881 never creates a SNAN as a result of an
operation; NANs created by operand error exceptions are always non-signaling NANs.

When a SNAN is an operand involved in an arithmetic instruction, the SNAN bit is set in the
FPSR exception byte. Since the FMOVEM, FMOVE FPcr, and FSAVE instructions do not
modify the status bits, they cannot generate exceptions. Therefore, these instructions are
useful for manipulating SNANs.

Trap Disabled Results: If the destination data format is S, D, X, or P, then the SNAN bit in
the NAN is set to one and the resulting non-signaling NAN is transferred to the destination.
No bits other than the SNAN bit of the NAN are modified, although the input NAN is
truncated if necessary. If the destination data format is B, W, or L, then the 8, 16, or 32 most
significant bits of the SNAN significand, with the SNAN bit set, are written to the destination.

Trap Enabled Results: For memory or MC68020 data register destinations, the result is
written in the same manner as if the traps were disabled, and then a mid-instruction except -
ion is signaled. If desired, the trap handler can overwrite the result.

For floating-point data register destinations, instruction execution is terminated and the
floating-point data registers are not modified. In this case, the SNAN trap handler should
supply the result. To enable the trap handler to return a result, the MC68020 and the
MC68881 supply:

1) The address of the instruction where the error occurred (in the FPIAR). By examining
the instruction, the trap handler may determine the operation being performed, the
value of the second operand (for dyadic instructions), and the destination location.

2) The address of the destination, if in memory, in the mid-instruction stack frame (at
offset +$10). This allows the trap handler to overwrite the NAN, if necessary, without
recalculating the effective address.

3) The FSAVE instruction that places the exceptional operand in a stack frame. For
additional FSAVE stack frame information, refer to 4.3.2 State Frames. The
exceptional operand is the source input argument converted to extended precision.

Note that the trap handler should only use the FMOVEM instruction to read or write the
floating-point data registers, since FMOVEM can not generate further exceptions. Also, the
only way that a SNAN can be written into a floating-point data register is via the FMOVEM
instruction.

4.1.2.3 OPERAND ERROR. Operand errors encompass problems arising in a variety of
operations, and cover those errors not frequent or important enough to merit a specific
exception condition. Basically, an operand error occurs when an operation has no mathe-
matical interpretation for the given operands. The possible operand errors are listed in Table
4-2. When an operand error occurs, the OPERR bit is set in the FPSR exception status byte.

Trap Disabled Results: For a memory or MC68020 data register destination, several
possible results can be generated, depending on the destination size and error type. (An
operand error is never generated when the destination is an MC68020 data register or
memory if the destination format is S, D, or X.)

Table 4-2. Possible Operand Errors

Instruction Condition Causing Operand Error
FACOS Source is tinfinity, > +1, or < —1
FADD (+infinity) + (—infinity) or (<infinity) + (+infinity)
FASIN Source is tinfinity, > +1, or < -1
FATANH Source is > +1, or < —1
FCOS Source is tinfinity
FDIV 0/0 or infinity/infinity
FGETEXP Source is tinfinity
FGETMAN Source is tinfinity
FLOG10 Source is <0
FLOG2 Source is <0
FLOGN Source is <0
FLOGNP1 Source is < -1
FMOD Floating-Point Data Register is tinfinity or Source is 0, other Operand is Not a NAN
FMOVE to
B,W,orL Integer Overflow/Undertlow, Source is NAN, or Source is tinfinity
FMOVE to P Source Exponent > 999 (Decimal) or k-Factor > +17
FMUL One Operand is 0, Other Operand is Zinfinity
FREM Floating-Point Data Register is tinfinity or Source is 0, Other Operand is Not a NAN
FSCALE Source is tinfinity
FSGLDIV 0/0 or Infinity/Infinity
FSGLMUL One Operand is 0, Other Operand is Infinity
FSIN Source is tinfinity
FSINCOS Source is infinity
FSQRT Source <0
FSUB Source and Floating-Point Data Register are +infinity or Source and FPn are —infinity
FTAN Source is tinfinity

4-7

If the operand error is caused by an integer overflow, or if the floating-point data register
being stored is infinity, the result is the largest positive or negative integer that can fit in the
specified destination format size. If the destination is B, W, or L and the floating-point number
being stored is a NAN, then the 8, 16, or 32 most significant bits of the NAN significand are
stored as the result.

For packed decimal results, if the k factor is greater than +17, the result returned is a packed
decimal string that assumes a k factor equal to +17. For packed decimal results where the
absolute value of the exponent is greater than 999, the decimal string is returned with the
three least significant exponent digits in EXP2, EXP1, and EXPO. The fourth digit, EXP3, is
supplied in the most significant four bits of the third byte in the string. Refer to 2.8 DATA
FORMAT DETAILS for the packed decimal string format.

If traps are disabled and the destination is a floating-point data register, then a extended
precision non-signaling NAN is stored in the destination floating-point data register.

Trap Enabled Results: For memory or MC68020 data register destinations, the
destination operand is written as if the trap were disabled, and then a take exception
primitive is returned to the MC68020. This can only occur for the FMOVE FPm,<ea>
instruction, and the exception is reported as a mid-instruciton exception. If desired, the trap
handler can overwrite the result generated by the MC68881.

If the destination is a floating-point data register, then the register is not modified by the
MC68881. In this case, the trap handler should generate the appropriate result. To enable
the trap handler to return a result, the MC68020 and MC68881 supply:

1) The address of the instruction where the error occured (in the FPIAR). By examining
the instruction, the trap handler may determine the operation being performed, the
value of the second operand (for dyadic instructions), and the destination location.

2) The address of the destination, if in memory, in the mid-instructions stack frame (at
offset +$10). This allows the trap handler to overwritethe NAN, if necessary, without
recalculating the effective address.

3) The FSAVE instruction that places the exceptional operand in a stack frame. For
additional FSAVE stack frame information, refer to 4.3.2 State Frames. The
exceptional operand is the source input argument converted to extended precision.

Note that the trap handler should only use the FMOVEM instruction to read or write to the
floating-point data registers, since FMOVEM will not generate further exceptions or change
the condition codes.

4.1.2.4 OVERFLOW. Overflow is the condition that exists when an arithmetic operation
creates a floating-point intermediate result that is too large to be represented in a floating-
point data register or, in a store to memory, when the contents of the source floating-point
data register are too large to be represented in the destination format.

Overflow is detected for a given data format and operation when the result exponent is

greater than or equal to the maximum exponent value of the format. Overflow can only occur
when the destination is in the S, D, or X formats. Overflows when converting to the B, W, or L

4-8

integer and packed decimal formats are included as operand errors. Refer to 2.8 DATA
FORMAT DETAILS for the maximum exponent value for each format. At the end of any
operation that could potentially overflow and before the result is stored to the destination, the
intermediate result is checked for underflow, then rounded, and then checked for overflow. If
overflow occurs, then the OVFL bit is set in the FPSR exception byte.

NOTE

An overflow can occur when the destination is a floating-point data register
even if the intermediate result is small enough to be represented as an
extended precision number. This is due to the fact that the selected rounding
precision is single or double, the intermediate result is rounded to that
precision (both the mantissa and the exponent) and then the rounded result is
stored in extended precision format. If the magnitude of the intermediate result
exceeds the range of the selected rounding precision format, an overflow will
occur.

Trap Disabled Results: The following values are stored at the destination, based on the
current rounding mode:

Rounding Mode Result
RN Infinity, with the sign of the intermediate result
RZ Largest magnitude number, with the sign of the intermediate result
RM For positive overflow, largest positive number
For negative overflow, —infinity
RP For positive overflow, +infinity

For negative overflow, largest negative number

Trap Enabled Results: The result stored in the destination is the same as the result
stored when the trap is disabled, and a take exception primitive is returned to the MC68020.
If the destination is memory or an MC68020 data register, the operand is stored, and then a
take mid-instruction exception primitive is issued. If the destination is a floating-point data
register, a take pre-instruction exception primitive is returned when the MC68020 attempts to
initiate the next MC68881 instruction.

The address of the instruction that causes the overflow is available to the trap handler in the
FPIAR. By examining the instruction, the exception type and operand location(s) may be
determined. Additional information is available to the trap handler by executing the FSAVE
instruction. When FSAVE is executed, the exceptional operand is stored in the stack frame.
Refer to 4.3.2 State Frames for details of the stack frame generated by FSAVE. The
exceptional operand is defined differently for various destination types:

1) Memory or MC68020 data register destination—the value in the exceptional operand
is the intermediate result mantissa rounded to the destination precision, with a 15-bit
exponent biased as a normal extended precision number. In the case of a memory
destination, the evaluated effective address of the operand is available in the
MC68020 mid-instrucion stack frame (at offset +$10). This allows the trap handler to
overwrite the default result, if necessary, without recalculating the effective address.

2) Floating-point data register destination—the value in the exceptional operand is the
intermediate result rounded to extended precision, with an exponent bias of $3FFF-

4-9

$6000 rather than $3FFF. The additional bias of —$6000 is used to "wrap" the 17-bit
intermediate value into a value that can be represented in 15 bits. To recover the 17-
bit twos complement exponent of the intermediate result, the 15-bit exponent of the
exceptional operand should be sign extended to at least 17 bits (i.e., if itis
manipulated in an MC68020 data register, it is sign extended to a long word value)
and then the bias of $3FFF-$6000 should be subtracted from that number. Note that
for most operations, the intermediate exponent value will not exceed 32,767 and thus
can be contained in a 16-bit integer. However, a completely general exception
handler should calculate a 17-bit exponent value.

In addition to normal overflow, the exponential instructions implemented by the
MC68881 (eX, 10X 2X, hyperbolic sine and cosine) may generate results that overflow
the 17-bit exponent used for intermediate results. For example, the eX function can
easily overflow the 17-bit intermediate exponent if the source value is very large (x =
+8192.0). When such an overflow occurs (called a catastrophic overflow), the
exceptional operand exponent value is set to $0000. This value is easily
distinguished from the exponent values produced by normal overflow processing.
The smallest exponent value that can be produced by a normal overflow is $1FFF
($04000 + $3FFF - $6000, truncated to 15 bits), while the largest exponent value is
$7FFF ($0A000 + $3FFF - $6000, truncated to 15 bits). The catastrophic overflow
exceptional operand exponent value of $0000 is produced any time that a calculation
generates an intermediate result exponent value greater than $0A000.

Note that the trap handler should only use the FMOVEM instructions to read or write to the
floating-point data registers since FMOVEM will not generate further exceptions or change
the condition codes.

4.1.2.5 UNDERFLOW. Underflow is the condition that occurs when an arithmetic
operation creates an intermediate result that is too small to be represented in a floating-point
data register using the selected rounding precision or, in a store to memory, when the
contents of the source floating-point data register are too small to be represented in the
destination format as a normalized result. Underflow is detected for a given data format and
operation when the intermediate result exponent is less than or equal to the minimum
exponent value of the destination format. Underflow can only occur when the destination
format is S, D, or X. When the destination format is packed decimal, underflows are included
as operand errors. When the destination format is B, W, or L, the conversion underflows to
zero without causing either an underflow or an operand error. See 2.8 DATA FORMAT
DETAILS for the minimum exponent value for each format.

At the end of any operation that could potentially underflow, the intermediate result is
checked for underflow, rounded, and checked for overflow before it is stored to the
destination. If an underflow occurs, then the UNFL bit is set in the FPSR exception status
byte.
NOTE
An underflow can occur when the destination is a floating-point data register
even if the intermediate result is large enough to be represented as an

extended precision number. This is due to the fact that if the selected rounding
precision is single or double, the intermediate result is rounded to that
precision (both the mantissa and the exponent) and then the rounded result is
stored in extended precision format. If the magnitude of the intermediate result
is too small to be represented in the selected rounding precision format, an
underflow will occur.

Trap Disabled Results: The result that is stored in the destination is either a
denormalized number or zero. Denormalization is accomplished by taking the intermediate
result (which is always normalized, due to the 17-bit exponent used in the MC68881 ALU
and temporary registers) and shifting the mantissa to the right while incrementing the
exponent until it is equal to the denormalized exponent value for the destination format. After
denormalization, the result is rounded to the destination precision.

If, in the process of denormalizing the intermediate result, all of the significant bits are shifted
off to the right, then the following values are stored at the destination, based on the current
rounding mode:

Rounding Mode Result
RN Zero, with the sign of the intermediate result
RZ Zero, with the sign of the intermediate result
RM For positive underflow, +zero
For negative underflow, smallest denormalized negative number
RP For positive underflow, smallest denormalized positive number

For negative overflow, -zero

Trap Enabled Results: The result stored in the destination is the same as the result
stored when traps are disabled, and a take exception primitive is returned to the MC68020. If
the destination is memory or an MC68020 data register, the operand is stored and then a
take mid-instruction exception primitive is issued. If the destination is a floating-point data
register, a take pre-instruction exception primitive is returned when the MC68020 attempts to
initiate the next MC68881 instruction.

The address of the instruction that caused the underflow is available to the trap handler in
the FPIAR. By examining the instruction, the operation type and operand location(s) may be
determined. Additional information is available to the trap handler by executing an FSAVE
instruction. When an FSAVE instruction is executed, the exceptional operand is stored in the
stack frame. Refer to 4.3.2 State Frames for details of the stack frame generated by
FSAVE. The exceptional operand is defined differently for various destination types:

1) Memory or MC68020 data register destination—the value in the exceptional operand
is the intermediate result mantissa rounded to the destination precision, with a 15-bit
exponent biased as a normal extended precision number. In the case of a memory
destination, the evaluated effective address of the operand is available in the
MC68020 mid-instruction stack frame (at offset +$10). This allows the trap handler to
overwrite the default, if necessary, without recalculating the effective address.

2) Floating-point data register destination—the value in the exceptional operand is the
intermediate result mantissa rounded to extended precision, with an exponent bias of
$3FFF+$6000 rather than $3FFF. The additional bias of +$6000 is in 15 bits. To
recover the 17-bit twos complement exponent of the intermediate result, the 15-bit
exponent of the exceptional operand is sign extended to at least 17 bits (i.e., if it is
manipulated in an MC68020 data register, it is sign extended to a long word value)
and then the bias of $3FFF+$6000 is subtracted from that number. Note that for most
operations, the intermediate exponent value will not be less than —-32768, and thus
can be contained in a 16-bit integer, but a completely general exception handler
should calculate a 17-bit exponent value.

In addition to normal underflow, the exponential instructions implemented by the
MCe8881 (eX, 10X, 2X, hyperbolic sine and cosine) may generate results that
underflow the 17-bit exponent used for intermediate results. For example, the eX
function can easily underflow the 17-bit intermediate exponent if the source value is a
large negative number (x < -8192.0). When such an underflow occurs (called a
catastrophic underflow), the exceptional operand exponent value is set to $0000.
This value is equal to the smallest exponent value that can be produced by a normal
underflow ($16001 + $3FFF + $6000, truncated to 15 bits), while the largest exponent
value is $5FFF ($1C000 + $3FFF + $6000, truncated to 15 bits). The catastrophic
underflow exceptional operand exponent value of $0000 is produced any time that a
calculation generates an intermediate result exponent value less than or equal to
$16001.

Note that the trap handler should only use the FMOVEM instructions to read or write to the
floating-point data registers since FMOVEM can not generate further exceptions or change
the condition codes.

NOTE

The |EEE standard defines two causes of an underflow: 1) when a result is so
tiny that the absolute value of the number is less than the minimum number
that can be represented by a normalized number in a specific format, and 2)
when loss of accuracy occurs when attempting to calculate a very small
number (a loss of accuracy also causes an inexact exception). The |IEEE
standard specifies that if the underflow trap is disabled, then an underflow
should only be signaled when both of these cases are satisfied (i.e., the result
is too small to represent with a given format, and there is a loss of accuracy
during the calculation of the final result). If the trap is enabled, the underflow
should be signaled any time a tiny result is produced, regardless of whether
accuracy is lost in calculating it.

The MC68881 UNFL bit in the AEXC byte reflects the IEEE trap disabled
definition, since it is only set when a tiny number is generated and accuracy
has been lost when calculating that number. The UNFL bit in the EXC byte
reflects the IEEE trap enabled definition, since it is set anytime a tiny number
is generated. Thus, if the MC68881 underflow trap is enabled, a trap occurs
when tininess alone is detected (as the IEEE standard specifies) to support
the emulation of machines that underflow to zero, rather than using the IEEE

4-12

gradual underflow method (i.e., denormalized numbers). If tne underflow trap
is disabled, the UNFL bit in the AEXC byte may be polled at the end of a
calculation to determine if any result produced during the operation required
representation as a denormalized number, and accuracy was lost when
denormalizing and rounding that result.

4.1.2.6 DIVIDE-BY-ZERO. This exception occurs when a zero divisor occurs in a
division, or when a transcendental function is asymptotic with infinity as the asymptote. Table
4-3 lists the instructions that can generate the divide- by-zero exception. When a divide-by-
zero is detected, the DZ bit is set in the FPSR exception status byte.

Table 4-3. Divide-by-Zero Exception Instructions

Instruction Operand Value
FDIV Source Operand = 0 and Floating-Point Data Register is Not a NAN
FLOG10 Source Operand = 0
FLOG2 Source Operand = 0
FLOGN Source Operand = 0
FTAN Source Operand is an Odd Multiple of +1w/2
FSGLDIV Source Operand = 0 and Floating-Point Data Register is Not a NAN

Trap Disabled Results: Store the following results in the destination floating-point data
register: 1) for the FDIV and FSGLDIV instructions, return an infinity with the sign set to the
exclusive OR of the signs of the input operands; 2) for the FTAN instruction, return infinity
with the sign of the source operand; 3) for the FLOGx instructions, return minus infinity.

Trap Enabled Results: The destination floating-point data register is not modified, and a
take pre-instruction exception primitive is returned when the MC68020 attempts to initiate
the next MC68881 instruction. The trap handler must generate a result to store in the
destination. To assist the trap handler in this function, the MC68881 supplies:

1) The address of the instruction where the divide-by-zero occurred (in the FPIAR). By
examining this instruction, the trap handler can determine the operation being
performed, the value of the source operand (for dyadic instructions), and the
destination floating-point register number.

2) The FSAVE instruction that places the exceptional operand in a stack frame. For
additional FSAVE stack frame information, refer to 4.3.2 State Frames. The
exceptional operand is the source input argument converted to extended precision.

Note that the trap handler should only use the FMOVEM instruction to read or write the

floating-point data registers, since FMOVEM can not generate further exceptions or change
the condition codes.

4-13

4.1.2.7 INEXACT RESULT. In a general sense, inexact result 2 (INEX2) is the condition
that exists when any operation, except the input of a packed decimal number, creates a
floating-point intermediate result whose infinitely precise mantissa has too many significant
bits to be represented exactly in the current rounding precision or in the destination
precision. If this condition occurs, the INEX2 bit is set in the status register EXC byte and the
infinitely precise result is rounded as described below.

The MC68881 provides two inexact bits (INEX1 and INEX2) to help distinguish between
inexact results generated by decimal input (INEX1) and other inexacts (INEX2). This is
useful in instructions like:

FADD.P #6.023E+24,FP3

where both types of inexacts can occur. In this case, the packed decimal to extended
precision conversion of the immediate source operand causes an inexact error to occur
which is signaled as INEX1. Furthermore, the subsequent add might also produce an
inexact result and may cause INEX2 to be set. Therefore, the MC68881 provides two inexact
bits in the FPSR exception status byte to distinguish these two cases.

Note that there is only one inexact exception vector number generated by the MC68881. If
either of the two inexact exceptions is enabled, then the inexact exception vector is fetched
by the MC68020, and the exception handler routine is initiated.

The IEEE standard specifies, and the MC68881 supports, four rounding modes. These
modes are round to nearest (RN), round toward zero (RZ), round toward plus infinity (RP),
and round toward minus infinity (RM). The rounding definitions are:

RN — The representable value nearest to the infinitely precise intermediate value is the
result. If the two nearest representable values are equally near (a tie), then the
one with the least significant bit equal to zero (even) is the result. This is
sometimes referred to as "round nearest, even".

RZ — The result is the value closest to, and no greater in magnitude than, the infinitely
precise intermediate result. This is sometimes referred to as the "chop mode",
since the effect is to clear the bits to the right of the rounding point.

RM — The result is the value closest to and no greater than the infinitely precise
intermediate result (possibly minus infinity).

RP — The result is the value closest to and no less than the infinitely precise inter-
mediate result (possibly plus infinity). The RM and RP rounding modes are often
referred to as "directed rounding modes" and are useful in interval arithmetic.

Rounding is accomplished using the intermediate result format shown in Figure 4-2.

17-BIT 63-BIT
EXPONENT FRACTION
t INTEGER BIT LEAST SIGNIFICANT BIT OF FRACTION
OVERFLOW BIT GUARD BIT —
ROUND BIT —
STICKY BIT ——

Figure 4-2. Intermediate Result Format

Depending on the rounding precision in effect, the location of the least significant bit of the
fraction and the guard, round, and sticky bits in the 67-bit intermediate result mantissa
varies.

The guard and round bits are always calculated exactly. The sticky bit is used to create the
illusion of an infinitely wide intermediate result mantissa. As shown by the arrow in the figure
above, the sticky bit is the logical OR of all the bits in the infinitely precise result to the right of
the round bit. During the calculation stage of an arithmetic operation, any non-zero bits
generated that are to the right of the round bit are stored as a one in the sticky bit (which is
used in rounding). Because of the sticky bit, the rounded intermediate result for all required
IEEE arithmetic operations in the round-to-nearest mode will be in error by no more than one
half unit in the last place. For transcendental instructions, the result may not be this accurate

(see 3.2 COMPUTATIONAL ACCURANCY).

NOTE

When the MC68881 is programmed to operate in the single or double
precision rounding mode, a method referred to as "range control" is used to
assure correct emulation of a machine that only supports single or double
precision arithmetic. When the MC68881 performs any calculation, the
intermediate result is in the format shown above, and a rounded result stored
into a floating-point data register is always in the extended precision format.
However, if the single or double precision rounding mode is in effect, the final
result generated by the MC68881 is always within the range of the selected
precision format.

Range control is accomplished by not only rounding the intermediate result
mantissa to the specified precision, but also checking the 17-bit intermediate
exponent to assure that it is within the representable range of the selected
rounding precision format. If the intermediate exponent exceeds the range of
the selected precision, the exponent value appropriate for an underflow or
overflow is stored as the resutt in the 15-bit extended precision exponent. For
example, if the rounding precision and mode is single/RM and the result of an
arithmetic operation overflows the magnitude of the single precision format,
the largest normalized single precision value is stored as an extended
precision number in the destination floating-point data register (i.e., an
exponent of $00FE and a mantissa of $FFFFFF0000000000). If an infinity is
the appropriate result for an underflow or overflow, the infinity value for the
destination data type is stored as the result (i.e., an exponent with the
maximum type and a mantissa of zero).

Figure 4-3 shows the algorithm that is used to round an intermediate result to the destination
precision. If the rounded result of an operation is not exact and the MC68881 is not
performing a decimal input operation, then the INEX2 bit is set in the FPSR EXC byte. For
inexact conversions of decimal inputs, the INEX1 bit is set.

BEGIN
IF GUARD, ROUND AND STICKY =0
THEN (RESULT IS EXACT)
DON'T SET INEX1 OR INEX2
DONT CHANGE THE INTERMEDIATE RESULT

ELSE (RESULT IN INEXACT)
SET INEX1 OR INEX2 IN THE FPSR EXC BYTE

SELECT THE ROUNDING MODE
RM: IF INTERMEDIATE RESULT IS POSITIVE THEN ADD 1 TO LSB
RN: IF GUARD = 1 AND ROUND AND STICKY = 0 (TIE CASE)
THEN IFLSB=1ADD 1LSB
ELSE ADD 1 TOLSB
END IF
RP: IF INTERMEDIATE RESULT IS NEGATIVE THEN ADD 1 TO LSB
RZ: (FALL THROUGH; GUARD, ROUND AND STICKY ARE CHOPPED)
END SELECT

IF OVERFLOW =1
THEN
SHIFT MANTISSA RIGHT BY ONE BIT
ADD 1 TO THE EXPONENT
END IF

SET GUARD, ROUND AND STICKY TO 0
END IF
END

Figure 4-3. Rounding Algorithm

Trap Disabled Results: The rounded result is delivered to the destination.

Trap Enabled Results: The rounded result is delivered to the destination, and an
exception is reported to the MC68020. If the destination is memory or an MC68020 data
register, a take mid-instruction exception primitive is returned immediately after the operand
is stored. If the destination is a floating-point data register, a take pre-instruction exception
primitive is returned when the MC68020 attempts to initiate the next MC68881 instruction.

The address of the instruction that generated the inexact result is available to the trap
handler in the FPIAR. By examining the instruction, the location of the operand(s) may be
determined. In the case of a memory destination, the evaluated effective address of the
operand is available in the MC68020 mid-instruction stack frame. Unlike the other
exceptions, when an FSAVE is executed by an inexact trap handler, the value of the
exceptional operand in the stack frame is not defined. If an inexact condition is the only
exception that occurred during the execution of an instruction, the value of the exceptional
operand is invalid. If multiple exceptions occur during an instruction, the exceptional
operand value is related to the other, higher priority exception.

4-16

Note that the trap handler should only use the FMOVEM instruction to read or write the
floating-point data registers, since FMOVEM can not generate further exceptions or change
the condition codes.

NOTE

The IEEE standard specifies that inexactness should be signaled on overflow
as well as for rounding as described above. The MC68881 implements this via
the INEX bit in the FPSR AEXC byte. However, the standard also indicates
that the inexact trap should be taken if an overflow occurs with the overflow
trap disabled and the inexact trap enabled. Therefore, the MC68881 takes the
inexact trap if this combination of conditions occurs, even though the INEX1 or
INEX2 bits may not be set in the FPSR EXC byte. In this case, INEX is set in
the AEXC byte and OVFL is set in both the EXC and AEXC bytes.

4.1.2.8 INEXACT RESULT ON DECIMAL INPUT. In a general sense, inexact result 1
(INEX1) is the condition that exists when a packed decimal operand can not be converted
exactly to extended precision in the current rounding mode. If this condition occurs, the
INEX1 bit is set in the FPSR exception status byte, and the infinitely precise result is rounded
as previously described. The MC68881 provides two inexact bits (INEX1 and INEX2) to help
distinguish between inexact results generated by decimal input (INEX1) and other inexact
results (INEX2).

Trap Disabled Results: If the instruction is an FMOVE to a floating-point data register,
then the rounded result is stored in the floating-point data register. If the instruction is not an
FMOVE, then the rounded result is used in the calculation.

Trap Enabled Results: The result is generated in the same manner as if traps were
disabled, except that a take pre-instruction exception primitive is returned to the MC68020
when it attempts to initiate the next MC68881 instruction.

The address of the instruction that caused the inexact decimal conversion is available to the
trap handler in the FPIAR. By examining the instruction, the location of the decimal string
may be determined, although the effective address of the string must be recalculated (if
possible) by the trap handler. Unlike the other exceptions, when an FSAVE is executed by
an inexact trap handler, the value of the exceptional operand in the stack frame is not
defined. If the inexact conversion is the only exception that occurs during the execution of an
instruction, the value of the exceptional operand is invalid. If multiple exceptions occur
during an instruction, the exceptional operand value is related to the other, higher priority
exception.

Note that the trap handler should only use the FMOVEM instruction to read or write the
floating-point data registers, since FMOVEM can not generate further exceptions or change
the condition codes.

4.1.2.9 MULTIPLE EXCEPTIONS. Dual and triple instruction exceptions may be
generated by a single instruction in a few cases. When multiple exceptions occur with traps

4-17

enabled for more than one exception class, only the highest priority exception trap is taken;
the other enabled exceptions can not cause a trap. The higher priority trap handler must
check for multiple exceptions. The priority of the traps are as follows:

BSUN -<«— Highest Priority

SNAN

OPERR

OVFL

UNFL

DZ

INEX2/INEX1 <————Lowest Priority

Below is a list of the multiple instruction exceptions that can occur:
SNAN and INEX1
OPERR and INEX2
OPERR and INEX1
OVFL and INEX2 and/or INEX1
UNFL and INEX2 and/or INEX1

4.1.2.10 IEEE EXCEPTION AND TRAP COMPATIBILITY. The IEEE standard only
defines five exceptions. The MC68881 FPSR AEXC byte contains bits representing these
five exceptions, which are defined to function exactly as the standard specifies the
exceptions. However, it may be more useful to differentiate the IEEE required exceptions into
the eight exceptions represented in the FPSR EXC byte. Since the MC68881 uses the bits in
the FPSR EXC byte and the FPCR ENABLE byte to determine when to trap, there are seven
possible instruction traps defined (INEX1 and INEX2 share a trap vector) instead of the five
defined by the standard.

If it is necessary to write an application program that only supports the five IEEE specified
traps, the BSUN, SNAN, and OPERR trap vectors should be set to point to the same trap
handler. This allows the MC68881 to support the invalid operation exception defined in the
IEEE standard, which is represented by the invalid operation (IOP) bit in the AEXC byte.

To satisfy other requirements in the IEEE standard, the MC68881 does the following:

1) A one is ORed into the AEXC byte IOP bit if the BSUN, SNAN, or OPERR bit is set in
the EXC byte.

2) A one is ORed into the AEXC byte underflow (UNFL) bit only if both the UNFL and the
INEX2 bits of the EXC byte are set. However, per the IEEE standard, the underflow
trap is based only on the UNFL bit in the EXC byte.

3) A one is ORed into the AEXC byte inexact (INEX) bit if the INEX1, INEX2 or OVFL bit
is set in the EXC byte.

4) The IEEE standard requires that an inexact trap be taken if it is enabled, an overflow
occurs, and the overflow trap is disabled. Thus, if the overflow (OVFL) bit is set in the
EXC byte, the OVFL bit is not set in the FPCR ENABLE byte, and the INEX2 bit is set
in the FPCR ENABLE byte, then the inexact trap is taken.

The equations for items 1, 2, and 3 are:
AEXC(IOP) = AEXC(IOP) v EXC(BSUN v SNAN v OPERR)
AEXC(UNFL) = AEXC(UNFL) v EXC(UNFL A INEX2)
AEXC(INX) = AEXC(INEX) v EXC(INEX1 v INEX2 v OVFL)
where:
"v" = logical OR
"A" = logical AND
The equation for item 4 (inexact trap taken) is:
Inexact Trap =
[[EXC(OVFL) v EXC(INEX2)] A ENABLE(INEX2)] v [EXC(INEX1) A ENABLE(INEX1)]

4.1.3 lllegal Command Words

lllegal coprocessor commands are coprocessor command word bit patterns that are not
implemented by the MC68881. The MC68881 reports illegal coprocessor commands as pre-
instruction exceptions, using the F-line emulator vector number. The specific illegal
command word bit patterns are defined in 3.5 INSTRUCTION ENCODING DETAILS.

MC68881 instructions consist of an operation word, a coprocessor command word (if any),
and extension words (if any). The MC68881 detects illegal command words, while the
MC68020 detects illegal operation words.

For the case where a coprocessor detected instruction trap is pending when the MC68020
writes an illegal coprocessor command to the MC68881 command CIR, the following action
is taken. First, the pending instruction exception is reported as a pre-instruction exception.
Following exception processing of the instruction exception, the MC68020 resumes execu-
tion of the main program at the beginning of the illegal coprocessor command, by writing to
the command CIR again. The illegal instruction exception is then reported by the MC68881.

4.1.4 MC68881 Detected Protocol Violation

All interprocessor communications in the coprocessor interface occur as standard M68000
bus cycles. A failure in this communication results in the MC68881 reporting a mid-
instruction exception with the coprocessor protocol violation vector number. Once a protocol
violation has been detected by the MC68881, the response CIR is encoded to the take pre-
instruction primitive such that the next read of the response CIR by the main processor will
terminate the dialog.

The MC68881 signals a protocol violation when unexpected accesses of the command,
condition, register select, or operand CIRs occur. Coprocessor detected protocol violations
occur when:
1) The MC68881 is expecting a write to the command or condition CIR, and instead an
access of the register select or operand CIR occurs;
2) The MC68881 is expecting a read of the register select or operand CIR, and instead
a write to the command, condition, or operand CIR occurs; and

3) The MC68881 is expecting a write to the operand CIR, and instead either a write to
the command or condition CIR or a read of the register select or operand CIR occurs.

For the above three violations, the MC68881 maps the 16-bit register selector CIR onto the
upper word of the 32-bit operand register. Thus, inconsistent data is read from the operand
CIR, and write cycles can not store the correct value. Of course, this is of no consequence,
since the protocol violation invalidates any operation being attempted by the MC68881 or
the main processor.

During normal operation, the MC68881 synchronizes interprocessor communication by
delaying the assertion of DSACK, if necessary. However, upon detection of a protocol
violation, the MC68881 always terminates the access by immediately asserting DSACK.
Thus, the system data bus can not lock up due to a coprocessor interface protocol violation.

A protocol violation can not occur as a result of an access to the reserved register locations,
a read of a write-only register, or a write to a read-only register (a read of a reserved or write-
only register always returns a value of all ones). One exception to this rule is that a write
access to the register select CIR causes a protocol violation. Reads of the save or response
CIR are always valid, as are writes to the restore or control CIR.

While the MC68881 requests that the MC68020 write to the instruction address CIR (by
setting the PC bit in some primitives), accesses of this register are neither expected or
unexpected. Thus, when the MC68881 is utilized as a peripheral processor where no
concurrent instruction execution occurs, this request may be ignored without incurring a
protocol violation exception. The FPIAR is updated by the MC68881 through the instruction
address CIR by the MC68881. However, the FPIAR exists only to provide exception handlers
with a pointer to faulty instructions following concurrent MC68020/MC68881 instruction
execution.

A protocol violation is the highest priority MC68881-detected exception. It is also considered
to be a fatal exception, since the MC68020 acknowledgment of the protocol violation
exception clears any pending MC68881 instruction exceptions or illegal instructions.

NOTE

To distinguish between a protocol violation detected by the MC68020 or the
MC68881, an exception handler may read the response CIR and evaluate the
primitive. If the protocol violation is detected by the MC68881 due to an
unexpected access, the operation being executed previously is aborted and
the MC68881 assumes the idle state when the exception acknowledge is
received. Therefore, the primitive read from the response CIR is null (CA = 0).
If the protocol violation is detected by the MC68020 due to an illegal primitive,
the MC68881 response CIR contains that primitive when the exception
handler reads it (since the MC68881 can not internally generate an illegal
primitive, an MC68020 detected protocol violation indicates a hardware
failure).

To read the response CIR in an hardware independent manner, the move
alternate address space (MOVES) instruction can be utilized. For example,

4-20

the following instruction sequence reads the response CIR of the coprocessor
with CPID = 1 into an MC68020 data register:

MOVE.B 7,D0 Prepare the SFC register

MOVEC DO,SFC for a CPU space cycle...

MOVES.W $00022000,D0 Execute a "coprocessor" cycle.

4.1.5 Recovery from Exceptions

When an MC68881-detected exception occurs, enough information is made available to the
trap handler to perform the necessary corrective action and then resume execution of the
program that caused the exception. Of course, in some instances it may not be valid to
resume execution of the program; and for protocol violations, recovery is not possible. The
information available to the exception handlers was described previously, and the following
paragraphs summarize the methods used to resume execution of a program after an
exception occurs.

In all cases, the stack frame generated by the MC68020 in response to an MC68881-
detected exception contains a program counter value that points to the instruction to be
executed upon return from the exception handler. In the case of pre-instruction exceptions,
the instruction to be executed upon return is the MC68881 instruction that was attempted,
but preempted by a pending exception. For mid-instruction exceptions (other than
interrupts), two pointers are saved: the address of the MC68881 instruction that caused the
exception and the address of the instruction immediately following that MC68881 instruction.
Furthermore, the FPIAR contains a pointer to the MC68881 instruction that caused the
exception in both cases. Thus an exception handler can always locate the instruction that
caused an exception, and identify the next instruction to be executed upon return from the
handler.

When the MC68020 executes a return from exception (RTE) instruction, it reads the stack
frame from the top of the active system stack and restores that context. In the case where the
stack frame was generated by an MC68881 pre-instruction exception, the context that is
restored is that the MC68020 is ready to begin execution of the MC68881 instruction when
the RTE is completed. The MC68881 instruction begins execution in the normal manner,
with the MC68020 writing the coprocessor command word to the MC68881.

In the case where the RTE stack frame is generated by an MC68881-signaled mid-
instruction exception (i.e., it is caused by an error during an FMOVE FPn,<ea> instruction,
not by an interrupt during such an instruction), the context restore operation is slightly
different than that just described. In this case, the MC68020 must complete execution of the
instruction that was suspended by the exception. When the RTE instruction completes
execution, the MC68020 first reads the response CIR of the MC68881 to determine the next
appropriate action. Since the MC68881 always finishes execution of the instruction that
causes this type exception before reporting it, the response that is returned is null (CA 0,

—_ + + ith ¢tha 4
PF = 1), which releases the main processor to continue with the execution of the next

instruction. Note that after a take mid-instruction exception primitive is returned, the main
processor is not required by the MC68881 to perform a read from the resonse CIR before
initiating the next floating-point instruction; but the MC68020 always performs this action
when processing a mid-instruction stack frame.

4-21

An arithmetic exception handler (i.e., exception handlers other than the BSUN handler)
routine is not required to perform any action to clear the cause of an exception. In fact, an
arithmetic exception handler may consist of a single RTE instruction (which produces the
same logical effect as disabling an exception). This is due to the fact that when the MC68881
signals an exception to the MC68020, the main processor acknowledges the exception by
writing to the control CIR; and the exception acknowledge clears any pending exceptions in
the MC68881. Thus an arithmetic exception handler is not required to clear any status bits or
read any MC68881 registers in order to prevent the recurrence of an exception when an RTE
instruction is executed. In the case of the BSUN exception handler, some action must be
taken (as described in 4.1.2.1, BRANCH/SET ON UNORDERED (BSUN)) by the
exception handler to avoid an infinite loop condition.

If an exception handler is required to execute any MC68881 instruction other than an
FMOVEM, an FSAVE should be the first MC68881 instruction to be executed. This assures
that an exception handler can not generate any exceptions related to, or modify the context
of, the program that caused the exception. it should also be noted that the FPIAR value must
be saved before any instruction other than an FMOVEM is executed, so that the address of
the instruction that caused the exception is not lost. When the exception handler completes
the error recovery and is prepared to return to the suspended program, an FRESTORE is
executed as the last MC68881 instruction; this restores the previous context of the program
that caused the exception.

4.2 MAIN PROCESSOR DETECTED EXCEPTIONS

The following paragraphs describes exceptions which may be detected by the MC68020
during MC68881 instruction execution. Refer to the MC68020 32-Bit Microprocessor User's
Manual for additional information on these exceptions, and the pre- and mid-instruction
exception stack frames.

4.2.1 Trap on Coprocessor Condition Instructions

The MC68881 trap on condition instructions are initiated when the MC68020 writes a
conditional predicate to the MC68881 for evaluation and reads a true/false condition
evaluation in the MC68881 response primitive. If the MC68881 indicates that the condition is
true, the MC68020 takes a post-instruction exception using the TRAPV/TRAPcc vector
number.

The stack frame generated by the MC68020 in response to this exception contains two
pointer values: 1) a pointer to the FTRAPcc instruction that caused the exception, and 2) a
pointer to the instruction that follows the FTRAPcc (which is where the processor returns if an
RTE instruction is executed).

4-22

4.2.2 lllegal Instructions

The MC68881 instructions consist of an operation word, a coprocessor command word (if
any), and extension words (if any). The MC68881 detects illegal command words whereas
the MC68020 detects illegal operation words. When the MC68020 detects an illegal
operation word on a coprocessor instruction, it takes a pre-instruction exception using the F-
line emulator vector number. Refer to 3.5 INSTRUCTION ENCODING DETAILS for
specific bit patterns which are illegal coprocessor operation words.

In addition to detecting an illegal operation word, the MC68020 may detect an illegal
instruction even though the operation word is valid. This is due to the fact that the MC68881
either implicitly or explicitly indicates the valid addressing modes for an instruction whenever
it returns a primitive response to the MC68020 that requests a data transfer to/from the
effective address. Thus, the MC68020 may decide that properly formed MC68881 operation
words and primitive responses are invalid if they specify operations which are illegal, such
as writing a to non-alterable effective address.

When the MC68020 detects an invalid instruction in this manner, it terminates the MC68881
execution of the instruction by writing an abort to the control CIR. The MC68020 then takes a
pre-instruction exception using the F-line emulator vector number. Termination of the
MC68881 instruction execution in this manner does not alter any visible processor or
coprocessor registers or status (such as pending coprocessor exceptions). Use of the F-line
emulator trap allows the operating system to emulate any extensions to the MC68881 that
are not supported by a specific processor.

4.2.3 MC68020 Detected Protocol Violations

If the MC68020 reads an MC68881 response primitive which it interprets as an illegal
primitive, it does not terminate the MC68881 execution of the instruction by writing to the
coprocessor interface control register. Instead, the MC68020 takes a mid-instruction
exception using the coprocessor protocol violation vector number.

Since the MC68881 never issues an illegal response primitive, this feature of the MC68020
serves as a protection mechanism for interprocessor communications. If a protocol violation
is taken on an MC68881 instruction, whether detected by the MC68881 or the MC68020, a
system failure may be assumed. Refer to 4.1.4 MC68881 Detected Protocol Violation
for an example of how an exception handler can determine the cause of a protocol violation.

4.2.4 Trace Exceptions

To aid in program development, the MC68020 includes a facility to allow instruction-by-
instruction tracing. In the single-step trace mode, after each instruction is executed, the
MC68020 takes a post-instruction exception using the trace vector number. This allows a
debugging program in the trace exception handler to monitor the execution of a program
under test. Refer to the MC68020 32-Bit Microprocessor User's Manual for a complete
description of how the trace mode is used.

4-23

Many MC68881 instructions may operate concurrently with MC68020 instructions, and defer
the reporting of coprocessor detected instruction exceptions until the next MC68881
instruction is dispatched by the MC68020. This provides the user with a sequential
instruction execution model even though concurrent instruction execution may occur. To
guarantee that pending exceptions are always reported at the same point in an instruction
sequence, regardless of whether tracing is enabled or not, the MC68881 always releases
the MC68020 at the end of a concurrent instruction before reporting the exception. This is
important, because the MC68020 (when in the trace mode) waits for an instruction to
complete before proceeding.

In the trace mode, the MC68881 could report an exception as a post-instruction exception by
issuing the null (CA = 0, PF = 0) primitive until the instruction is completed, and then issue
the take post-instruction exception primitive to report the exception. However, this action by
the MC68881 would change the point of detection of an exception from the beginning of the
next instruction (with tracing disabled) to the end of the current instruction (with tracing
enabled). This is undesirable because an error in a program might then occur with the trace
mode disabled, and not occur in the trace mode. To provide consistent reporting of
exceptions, the MC68881 always returns the null (CA = 0, PF = 1) primitive when it
completes execution of a concurrent instruction, and then reports a pending exception only
after a write to the command or condition CIR.

The synchronization of the two devices in the trace mode is accomplished through the PF bit
in the null primitive (see 5.1.1 Null Primitives). When the trace mode is enabled, the
MC68020 repeatedly reads the response CIR to determine when the MC68881 completes
instruction execution. If the null (CA =0, IA = 1, PF = 0) primitive is read, then the MC68020
checks for pending interrupts, and if none are pending, reads the response CIR again. This
process continues until the MC68020 receives a null (CA = 0, PF = 1) primitive from the
MC68881.

In order for a trace exception to be transparent to normal program execution, the trace
handler routine must take certain precautions in order to not disturb the context of the
MC68881. When the main processor detects an exception, it automatically saves the most
volatile portion of the current context and processes the exception immediately; thus the
trace handler routine is not required to perform any MC68020 context save in order for the
system to operate properly. The MC68881 does not operate in this manner, since it can not
initiate exception processing until the MC68020 attempts to execute a new floating-point
instruction. Also, the context information that must be saved for the MC68881 is more
extensive than that of the main processor; thus, it is left up to software to perform the save
only when necessary. The important consideration for a trace exception handler is that it
must perform a more extensive context save for the MC68881 than for the MC68020 (since
part of the MC68020 context save is automatic). Also, it should not execute any MC68881
instruction that may cause a pending exception to be reported,or a new exception to occur.

Given the constraints just described, it is apparent that the first and last MC68881
instructions that should be executed by a trace exception handler are the FSAVE and
FRESTORE instructions, respectively. By executing the FSAVE instruction before any other
floating-point instruction, any pending exceptions are saved in a state frame and then
cleared internally; thus an exception generated by the main program can not be reported
while the trace exception handler is executing. After the FSAVE instruction is executed, the

4-24

FMOVEM instruction can be used to save the user visible portion of the MC68881 context,
and then the trace handler is free to utilize the coprocessor as desired, without affecting the
main program context. When the trace handler is ready to return to the main program, the
FMOVEM instruction is used to restore the user visible context, followed by an FRESTORE
instruction to reinstate the exact context of the MC68881 prior to the trace exception
processing. Note that since the MC68020 is forced to wait until the completion of an
MC68881 instruction before processing a pending trace exception, the execution of the
FSAVE instruction by the trace handler will always result in an idle state frame being saved
and the user visible registers reflect the results of the last floating-point instruction. This is not
the case if the trace exception handler is allowed to begin execution before the MC68881
instruction is completed. Processors other than the MC68020 must implement the trace
synchronization mechanism in software (by polling the PF bit) in order to assure these
conditions.

Another consideration important to a trace handler in an interrupting environment is that an
interrupt can temporarily break the synchronization of the MC68020 and the MC68881. This
can occur because when the MC68020 is in the trace mode and receives a null (CA =0, IA =
1, PF = 0) primitive, it checks for interrupts and processes them if necessary before reading
the response CIR again; if an interrupt is pending, the interrupt exception will be processed
immediately. In response to the interrupt, the MC68020 saves a 10-word mid-instruction
stack frame, with the trace pending status saved as part of the previous context information.
When the interrupt handler completes execution and performs an RTE instruction, the
MC68020 returns to the trace pending mode and reads the response CIR to determine if the
previous coprocessor instruction is completed. In this manner, the exception processing for
the interrupt is completely transparent to the handling of the trace exception by the
MC68020/MC68881 pair. However, the interrupt handler must treat the MC68881 in the
same manner as described above for the trace handler; i.e., if it requires the use of the
MC68881, an FSAVE instruction must be executed to save the context of the coprocessor
before any other floating-point instructions are executed.

4.2.5 Interrupts

When the MC68881 is busy executing an instruction, it may issue a null (CA =1, IA = 1)
primitive response which requests the MC68020 to continue polling the response register
(this only occurs if the MC68881 requires additional services from the MC68020 for the
current instruction). When this occurs, the MC68881 indicates to the MC68020 that it may
sample interrupts between reads of the response CIR. If there is no interrupt pending, the
MC68020 simply reads the response CIR again. If there is an interrupt pending, the
MC68020 takes the interrupt exception using the mid-instruction stack frame. Upon exiting
from the interrupt handler, the MC68020 re-polls the MC68881 response CIR to continue the
suspended instruction dialog.

As described in 4.2.4 Trace Exceptions, an interrupt handler must use the proper
protocol to save the context of the MC68881 in order to be transparent to the main program.
If the interrupt handler requires the use of the MC68881, or if a task switch requires that the
context be saved, then an FSAVE instruction should be the first floating-point instruction
executed by the routine. If an interrupt handler does not interact with the MC68881, then no
context save operations are required.

4-25

Many MC68881 instructions can require a fairly long time to execute, and the MC68020 may
be forced to wait until the MC68881 execution is complete before proceeding to the next
instruction (because either the instruction does not allow concurrency or the main processor
is in the trace mode). Normally, the MC68020 can only process pending interrupts when it
reaches an instruction boundary, but this might adversely affect interrupt latency if it is not
allowed to process interrupts while waiting on the MC68881. To reduce interrupt latency as
much as possible, the MC68881 always sets the interrupts allowed (IA) bit in the null
(CA =1) and null (CA = 0, PF = 0) primitives; thus allowing interrupts to be processed while
the MC68020 is waiting on the coprocessor to complete an operation. In fact, most MC68881
instructions, regardless of their overall execution time, provide for very small interrupt latency
times. The worst case interrupt latency instruction for the MC68881 is the FRESTORE with a
busy state frame (see 6.3 INTERRUPT LATENCY TIMES for more information).

4.2.6 Address and Bus Errors

Bus cycle faults may occur while processing MC68881 instructions during the MC68020
accesses of the coprocessor interface registers, or during memory cycles run by the
MC68020 to access instructions or data. If the MC68020 receives a fault while running the
bus cycle which initiates an MC68881 instruction (i.e., the initial write to the command or
condition CIR), it assumes that no MC68881 is present in the system, and takes a pre-
instruction exception using the F-line emulator vector number. Thus, an MC68020 system
may utilize software emulation of the MC68881 or provide hardware floating point, and the
actual configuration is transparent to the application program. If any other access to the
MC68881 is faulted, it is assumed that the coprocessor has failed, and MC68020 takes a
bus error exception.

If the MC68020 has a memory fault while executing an MC68881 instruction, it takes an
address error or bus error exception. After the fault handler corrects the fault condition, it may
return and communication with the MC68881 continues as if the fault had not occurred. If the
processor is to be redispatched while the fault condition is being corrected, the state of the
MC68881 may be saved via the FSAVE instruction (see 4.3 CONTEXT SWITCHING).

4.2.7 Privilege Violations

The MC68020 operates in one of two states of privilege — the user state or the supervisor
state. The privilege state determines which operations are legal, and the S bit in the
MC68020 status register determines the privilege state. Most programs execute in user
state where accesses are controlled, and effects on other parts of the system are limited. The
operating system executes in supervisor state, has access to all resources, and may execute
all instructions; hence, it performs the overhead tasks for the user state programs.

4-26

The MC68881 FSAVE and FRESTORE instructions are privileged instructions, while all
others are non-priviliged. An attempt to execute the FSAVE or FRESTORE instructions while
in the user privilege state will result in the MC68020 taking a pre-instruction exception using
the privilege violation vector number.

4.2.8 Format Error Exceptions

When the FRESTORE instruction is executed, the MC68881 checks the validity of the format
word written to the restore CIR by the MC68020. Refer to 4.3.2 State Frames for
information on the format word. If the format word is invalid, this is indicated to the MC68020
when it reads back the contents of the restore CIR. The MC68020 then takes a pre-
instruction exception using the format error vector number.

4.3 CONTEXT SWITCHING

In most types of multitasking systems, it is often necessary to take control from one program
and give control to another program. This requires the operating system to extract (from the
MC68881) data corresponding to one program context and load the context corresponding
to the next program to be executed. The information that must be exchanged is divided into
two categories:

1) Programmer's model — consists of data accessible by the programmer using non-
privileged instructions. This data is saved and restored using the FMOVEM
instructions.

2) Internal state — consists of various internal flags and registers that the application
program need not be concerned with, but is vital in restoring the MC68881 to the
proper state. These internal lags and registers are accessed by the privileged FSAVE
and FRESTORE instructions.

The following paragraphs describe how this context information is manipulated.

4.3.1 FSAVE and FRESTORE Instructions, Overview

The basic mechanism for performing a context switch on the MC68881 is provided through
the FSAVE and FRESTORE instructions. These instructions provide a logical extension to
the instruction continuation mechanism that is used by the MC68010 and MC68020
processors to support virtual memory. The FSAVE instruction is treated much like a
microcode level interrupt to the MC68881, instructing it to suspend any operation that is
being executed (at the earliest possible boundary) and make a complete copy of the internal
state of the machine in memory. This is similar to the effect of the assertion of bus error to the
main processor. To restore the internal state saved by the FSAVE instruction, the
FRESTORE instruction is used, which is similar to the RTE instruction on the main processor.

4-27

The internal state information that is stored in memory by the FSAVE instruction contains the
image of the non-user visible portion of the machine, including the address of the
microprogram counter, temporary register values, and pending exception information. After
the execution of an FSAVE, the MC68881 enters the idle state, and any pending exceptions
are cleared. To perform a complete context save, the FMOVEM instruction can then be used
to save the user visible portion of the machine; and then a new context may be loaded.
When it is necessary to reload the context that was previously saved, these steps are
reversed: first the FMOVEM instruction loads the user visible context, followed by an
FRESTORE instruction which loads the non-user visible context. After the execution of the
FRESTORE, the MC68881 returns to the exact context that existed just before the FSAVE
instruction was executed, and execution continues from that point.

Depending on the state of the MC68881 when an FSAVE instruction is executed, the format
of the internal state information written to memory may be in one of three forms. Also, the
MC68881 may force the MC68020 to wait for a short time while the internal state is prepared
for the save operation. During execution of an FRESTORE instruction, the MC68881
interprets the state information read from memory to determine the appropriate response
action. The FRESTORE is a destructive command, in that the MC68881 immediately stops
any operation that it may be performing and begins to load the next context; thus there is no
need for a mechanism in the FRESTORE instruction to allow the MC68881 to make any
service requests to the MC68020. The protocol of the FSAVE and FRESTORE instructions
are detailed below, following a description of the various state frame formats generated by
the MC68881.

The three state frame formats that are generated by the MC68881 are shown in Figure 4-4.
In all three state frames, the first long word of the frame has the same format. The least
significant word of this long word is reserved for future definition by Motorola; it is included to
allow long word alignment of a state frame in memory. The most significant word of the first
long word (called the format word) contains the version number of the coprocessor that
generated the state frame (in the most significant byte) and the size of the internal state
stored in the frame (in the least significant byte). Although the version number and frame size
values are defined by the MC68881, the M68000 Family coprocessor interface defines the
null format word which is the one format word value that must be recognized by any
coprocessor and is described below.

When an FSAVE instruction is executed, the format word is the first data item transferred to
MC68020, and the main processor uses the size value to perform the correct address
calculations. During an FRESTORE instruction, the format word is written to the MC68881 to
initiate the restore operation. When this occurs, the MC68881 checks the version number
and frame size values for validity and signals a format exception if they are not valid for this
particular device. The version number is an 8-bit value that identifies the microcode version
of the MC68881, and the format of this number is defined internally by the MC68881. Future
devices will use a unique combination of the version number and frame size values in order
to guarantee that various revisions of the device can not incorrectly utilize an internal state
frame that is not valid for that revision.

4-28

$00

$04

$08

$0C

$10

$14

$18

$00

$04

$08

$0C

$AC
$B0

$B4

NULL STATE FRAME

31 23 15 7 0
$00 $00 RESERVED ($0000)
IDLE STATE FRAME
31 23 15 7 0
VERSION NUMBER $18 RESERVED ($0000)
COMMAND/CONDITION REGISTER RESERVED ($FFFF)
EXCEPTIONAL OPERAND
(12 BYTES)
OPERAND REGISTER
BIU FLAGS
BUSY STATE FRAME
31 23 15 7 0
VERSION NUMBER $B4 RESERVED ($0000)
_ INTERNAL REGISTERS ~
ot (180 BYTES) —~

Figure 4-4. MC68881 State Frame Formats

4-29

In addition to being used by the MC68881 to validate a state frame before it is used in a
restore operation, the format word may be used by a user program to identify the format of a
state frame and the state of the MC68881. In the following descriptions of the three state
frames, the data format within a frame is guaranteed only for those version number and
frame size values given in the accompanying tables. Routines that utilize state frame
information must examine the format word to correctly identify any data formats that are
subject to change by Motorola.

NOTE
The state size value in the format word indicates the size (in bytes) of the
MC68881 internal state information. This size value does not include the
format word or the reserved word.

4.3.2.2 NULL STATE FRAME. As shown in Figure 4-4, no internal state information is
saved in the null state frame. Only the coprocessor version number (0) and the state frame
size (0 bytes) are indicated. Version number 0 is a wild card number, allowing this state
frame type to be restored to a coprocessor of any version. The size value of a null state
frame is not assumed to be valid during a save operation and is ignored by the MC68881
during a restore operation. A restore of the null state performs the reset function, with all
floating-point data registers loaded with NANs and the FPCR set to zero. A save of the null
state results when no MC68881 instructions have been executed since the last null state
restore or hardware reset function. Note that a save of a null state indicates that the
MC68881 programmer's model is empty, and thus does not need to be saved with a
FMOVEM instruction.

4.3.2.1 IDLE STATE FRAME. As shown in Figure 4-4, 24 bytes of internal state are
saved in the idle state format. The format word indicates the coprocessor version number
and state size (24 bytes). The idle state is produced if an FSAVE occurs when a floating-
point instruction is not being executed, or when the current instruction is in the end phase
(refer to 4.3.3 FSAVE and FRESTORE Protocols for a definition of the end phase).

In addition to being used for context switching, the idle state frame contains information that
is useful to most floating-point exception handlers. First, it contains the exceptional operand
value, which can be evaluated by an exception handler to determine the cause of an
exception. Second, it contains the BIU flag word that indicates the status of the MC68881 at
the time of an FSAVE instruction. For example, this can be useful to a trace exception
handler, to allow a debug monitor routine to display the pending exception status along with
the register state of the machine.

As shown in Figure 4-3, the idle state frame contains four data items—the command/
condition register image, the exceptional operand, the operand register image, and the BIU
flags. A reserved word is also included in order to long word align the state frame; it is written
as $FFFF and ignored during restore operations. The command/condition word and operand
register may contain temporary information, as indicated by the BIU flags.

4-30

The format of the BIU flag word is shown in Figure 4-5. Only 10 of the 32 bits in the BIU flag
word are defined; the undefined bits are written as ones during save operations and ignored
during restore operations. The definitions of the 10 flag bits are given below.

31

26 23 20 15 7 0

OPERAND REGISTER BITS 24-31 VALID
—— OPERAND REGISTER BITS 16-23 VALID
OPERAND REGISTER BITS 8-15 VALID
OPERAND REGISTER BITS 0-7 VALID
OPERAND TO MEMORY MOVE PENDING
FLOATING-POINT EXCEPTION PENDING

ACCESS OF OPERAND REGISTER EXPECTED

PENDING INSTRUCTION OR ACCESS TYPE

INSTRUCTION PENDING

Bits 20-23

Bit 26

Bit 27

PROTOCOL VIOLATION PENDING

UNDEFINED, RESERVED (1 WHEN WRITTEN)

Figure 4-5. BIU Flag Format

These bits are set when valid data is contained in the operand register image
of the state frame. There is one flag bit for each byte in the 32-bit operand
register image; if a bit is one, there is valid data in the corresponding byte. If a
bit is zero, then the data in the corresponding byte is assumed to be invalid.
These bits can be used to qualify the image of the operand register and
should not be modified.

This bit indicates that the MC68881 has completed any necessary operand
conversions and is ready to write an operand to memory. If this bit is a zero,
then an operand transfer to memory is pending. This bit should not be
modified.

This bit indicates that a floating-point exception is pending which will be
reported when the MC68020 attempts to initiate the next floating-point
instruction (after an FRESTORE of this state frame). If this bit is zero, then an
exception is pending, and the logical AND of the FPSR EXC and FPCR
ENABLE bytes indicates the type of exception that is pending. This bit may be
read by an exception handler (particularly a trace routine) to determine the

4-31

Bit 28

Bit 29

Bit 30

Bit 31

exception status of the MC68881. As described below, a user program may
modify this bit and the FPSR EXC and FPCR ENABLE byte images to create a
pending software generated exception pending.

This bit indicates that the MC68881 is expecting the next coprocessor
interface register access to be to the operand CIR. This bit is used by the BIU
as part of the protocol violation checking hardware, and should not be
modified. If this bit is a zero, an access of the operand CIR is pending, and the
state of bit 29 determines whether the expected access is a read or write
cycle. Table 4-4 shows the definitions of the state of this bit.

This bit defines the type of pending operand access that is expected or the
type of pending operation that is saved in the command/condition register
image. This bit should not be modified. Table 4-4 shows the definitions of the
state of this bit.

This bit indicates that the MC68881 has received a new command word or
conditional predicate from the MC68020, but has not been able to begin
execution of that operation. If this bit is zero, the command word or conditional
prediciate that was received is contained in the command/condition register
images of the state frame. This bit should not be modified. Table 4-4 shows
the definitions of the state of this bit.

This bit indicates that a protocol violation has been detected by the MC68881,
and the MC68020 has not responded with an exception acknowledge or abort
operation. If this bit is a one, a protocol violation is pending. This bit should not
be modified.

Table 4-4. BIU Flag Bit Definitions

30 29 | 28 Definition
0 0 0 (Undefined, Reserved)
0 0 1 Conditional Instruction Pending
0 1 0 (Undefined, Reserved)
0 1 1 General Instruction Pending
1 0 0 Write of Operand CIR Pending
1 0 1 (Undefined, Reserved)
1 1 0 Read of Operand CIR Pending
1 1 1 No Pending Instruction or Operand CIR Access

4-32

NOTE
The format of the idle state frame and the BIU flags given above are for the
initial production version of the MC68881; this format is identified by the format
word value $1F18. Motorola reserves the right to utilize different state frame
formats and format word values to support future revisions to the MC68881.

The only bit in the BIU flag word that may be modified by software is bit 27, the pending
exception bit. If this bit is zero, then an exception is pending and may be cleared by
changing it to a one. Alternatively, the type of the pending exception may b® changed by
modifying the FPSR EXC and/or FPCR ENABLE byte(s) before executing an FRESTORE.
Finally, if the pending exception bit is one (indicating that no exception is pending), it may be
changed to make an exception pending; the type of exception pending is defined by the
FPSR EXC and FPCR ENABLE bytes. In all of these cases, the change in the exception
status takes effect when the state frame is utilized by an FRESTORE instruction.

The exception pending bit (referred to as EXC_PEND) in the BIU flag word is the image of
the exception pending signal internal to the MC68881. Normally EXC_PEND is negated by
the MC68881 execution unit when an instruction (other than an FMOVEM, FMOVE control
register, FSAVE, FRESTORE) begins execution, and is asserted if an exception occurs
during the instruction. The bus interface unit uses EXC_PEND to determine the primitive
response that is encoded in the response CIR after a write to the command or condition
CIRs, or after the completion of the transfer of a floating-point operand to memory. If
EXC_PEND is true when an attempt is made to initiate an MC68881 instruction (other than
an FMOVEM, FMOVE control register, FSAVE, or FRESTORE), then the response CIR is
encoded to the take pre-instruction exception primitive; otherwise, the dialog for the
instructon is started. If EXC_PEND is true at the end of the move of a floating-point operand
to memory, then the response CIR is encoded to the take mid-instruction exception primitive;
otherwise it is encoded to the null (CA = 0, PF = 1) primitive. The vector number that is
encoded in the take exception primitive is determined by the state of the FPSR EXC and
FPCR ENABLE bytes, corresponds to the highest priority exception that is enabled. When
the MC68020 responds to the take exception primitive, by writing an exception acknowledge
to the control CIR, EXC_PEND is cleared by the MC68881.

With this understanding of how EXC_PEND (and its image in the BIU flag word) affects the
operation of the MC68881, a programmer can make exceptions pending in the MC68881
under software control. Or, conversely, a pending exception type may be changed or cleared
if necessary.

4.3.2.3 BUSY STATE FRAME. As shown in Figure 4-4, 180 bytes of internal state are

saved in the busy state format. The format word indicates the coprocessor version number

and state size (180 bytes). The busy state is produced if an FSAVE occurs when a floating-

point instruction is in the initial or middle phase. Due to the volatile nature of the MC68881

internal state during calculation, this state frame does not contain any information useful to
L

el mbl;a o s e bhn Semnman abhas -~ e e e i e e B T YT T Y]
applications programs, and the frame should not be modified in any way.

4-33

4.3.3 FSAVE and FRESTORE Protocols

The following paragraphs describe the bus cycles that occur between the MC68020 and the
MC68881 during FSAVE and FRESTORE instructions and the conditions under which each
size of state frame is produced. To describe the response of the MC68881 to an FSAVE
instruction, the execution state is identified as one of five phases shown in Table 4-5.

Table 4-5. MC68881 Responses to Save Command

Phase Name | Response Time | State Frame Type
Reset Immediate Null
Idle Immediate Idle
Initial Immediate Busy
Middle Periodic Busy
End Delayed Idle

4.3.3.1 FSAVE PROTOCOL. When the MC68020 encounters an FSAVE instruction, it
attempts to initiate a save operation in the MC68881 by first reading from the save CIR. If the
MC68881 is ready to perform the save, it responds with a valid state frame format word
which informs the MC68020 that the state frame transfer may begin and what size frame is to
be saved. If the MC68881 is not ready to begin the transfer of the state frame, it returns the
come-again format word, forcing the MC68020 to wait. When the MC68020 receives the
come-again format word, it checks for pending interrupts and processes them if necessary.
Otherwise, it repeatedly reads the save CIR until a non-come-again format word is returned.
When a valid format word is received by the MC68020, it reads the number of bytes indicat-
ed by the format word, four bytes at a time, from the operand CIR and writes them to memory.

The MC68881 always returns one of five format words when the save CIR is read by the
MC68020. Table 4-6 shows the five format word values and their meanings. In this figure,
the version number of the idle and busy format words, $1F, corresponds to the version
number of the first production version of the MC68881; future revisions of the device will
utilize different version numbers to identify unique state frame formats. If the format of the idle
state frame of a future version of the MC68881 differs from that of version $1F, Motorola will
provide the new format information when the new version is available.

The come-again format word is returned by the MC68881 to force the MC68020 to wait, as
described above. When the MC68881 is ready to complete a save operation, one of the
other valid format words (null, idle, or busy) is returned to the main processor, and then the
appropriate state frame is transferred to memory. The only time that the MC68881 uses the
illegal format word is when a read of the save CIR occurs when the MC68881 is in the
process of performing a state save or state restore. Normally, this only occurs when the
execution of an FSAVE or FRESTORE instruction is suspended (e.g., due to a page fault
during the save or restore operation) and an attempt is made to execute a new FSAVE
instruction. If this happens, the illegal format word is returned to cause a format exception to
be taken by the main processor. When the MC68020 receives the illegal format word, an

4-34

Table 4-6. MC68881 Format Word Definitions

Format Word Definition and Frame Size
$0018* Null State
$0118* Come Again
$0218* liegal, Format Error
$1F18 Idle State
$1FB4 Busy State

*The frame size byte for these format words is undefined for
the M68000 Family coprocessor interface. Version $1F of
the MC68881 returns the value of $18 for the frame size in
these format words; however, future devices are not guaran-
teed to do this.

abort is written to the control CIR and then exception processing is initiated. In this case, the
format error handler routine examines the instruction that was being executed when the
format error occurred and can determine that the second FSAVE instruction failed due to
"nesting” of save or restore operations. Such an error is considered to be a catastrophic
system error, since the MC68881 context is lost and can not be recovered.

When an idle or busy format word is received by the MC68020, it transfers the number of
bytes in the frame (four bytes at a time) to memory. First, the format word is written to memory
at the evaluated effective address. For the predecrement addressing mode, the value of the
specified address register is saved in a temporary register, the size of the state frame is
subtracted from the address register, and the format word is pushed to that address (thus the
required stack space is allocated before the save operation is started). The state frame is
then filled, from higher addresses to lower addresses, using the temporary register as a
pointer. For the control alterable addressing modes, the format word is written to the
specified address; then the address of the last word of the frame is calculated (in a
temporary register) and the frame is filled from higher addresses to lower addresses. After
the last byte of the state frame is written to memory, the MC68881 is in the idle state with no
pending exceptions, and the MC68020 executes the next instruction (it does not read the
save or response CIR after the save operation).

The following paragraphs describe the response of the MC68881 to an FSAVE instruction
for the various phases of instruction execution.

4.3.3.1.1 Reset Phase. In this phase, no MC68881 instructions have been executed
since the last hardware reset or FRESTORE of a null state frame. When the MC68881 is in
this state and an FSAVE is executed, a null format word is returned immediately.

4-35

4.3.3.1.2 Idle Phase. In this phase, the MC68881 is not executing an instruction, but at
least one instruction has been executed by it since the last hardware reset or FRESTORE of
a null state frame. When the MC68881 is in this state and an FSAVE is executed, an idle
format word is returned immediately, and an idle state frame is stored.

4.3.3.1.3 Initial Phase. In this phase, the MC68881 is acquiring instruction and operand
words from the MC68020. In virtual memory systems, a memory fault can occur during this
phase due to an attempt to access an operand that is not resident in main memory. In this
case, the MC68020 traps to a fault handler to initiate a transfer from secondary storage,
typically involving one or more disk accesses. After initiating the transfer, the operating
